Professeur	Bahloul Khalid (+212) 622-17-65-52
Chapitre	Arithmétique dans Z (l'essentiel du cours + applications)
Niveaux	Bac français / 1 ^{ère} et 2 ^{ème} Bac International SM

I) LA DIVISIBILITE DANS Z

1 Diviseur d'un entier

Définition: Soient a et b deux entiers relatifs tels que $b \neq 0$; on dit que l'entier relatif b divise a s'il existe un entier relatif k tel que a = kb;

On écrit : b|a.

On dit que a est divisible par b

Exemples: $\frac{3}{12}$ car $12 = 3 \times 4$

- Si l'entier non nul b divise l'entier a alors −b divise lui aussi.
- 1 divise tous les entiers relatifs
- 0 est divisible par tous les entiers non nuls : car 0 = 0 × b
- Si a est un entier les diviseurs de a constituent un ensemble fini noté D_a :

$$D_a = \{b \in \mathbb{Z} \mid b|a\}$$

Application

- 1) Déterminer et dénombrer les diviseurs naturels de 156
- 2) Déterminer dans Z tous les diviseurs de -8

Solution01:1) 156 a 12 diviseurs:

1; 2; 3; 4; 6; 12; 13; 26; 39; 52; 78 et 156.

156 et 1 sont appelés diviseurs triviaux, les autres sont des diviseurs stricts.

2)
$$D_{-8} = \{-8, -4, -2, -1, 1, 2, 4, 8\}$$

Propriété : $a \in \mathbb{Z}$; $b \in \mathbb{Z}$; $c \in \mathbb{Z}$

- 1/a et -1/a et a/a et a/-a
- $b|a \Rightarrow |b| \le |a|$
- $a/b \Rightarrow a/b \times c$
- $a/b \Rightarrow |a| \le |b|$
- $b|1 \Rightarrow b \in \{-1,1\}$

2 Multiple d'un entier

Définition : On dit que a est un multiple de b si b est un diviseur de a

Remarque : Si b est un entier non nul, les multiples de b constituent Un ensemble infini noté $b\mathbb{Z}$

 $b\mathbb{Z} = \{m \in \mathbb{Z}/ ; m = kb \ où \ k \in \mathbb{Z}\}$

Exemple:

 $3\mathbb{Z} = \{\leftarrow \cdots, -12, -9, -6, -3,0,3,6,9,12, \dots \rightarrow \}$

3 Multiple commun et Diviseur commun de deux entiers

Définition:

- a) Si b|m et b|n on dit que b est un diviseur commun de m et n
- b) Si b|m et b'|m, on dit que m est un multiple commun de b et b'.

Propriété : Etant donnés des entiers relatifs non nuls. On a les propositions suivantes :

- a|b et $b|a \Rightarrow |a| = |b|$
- a|b et c|d \Rightarrow ac|bd
- a|b et $b|c \Rightarrow a|c$
- $\bullet a|b \Rightarrow a|bc$
- a|m et $a|n \Rightarrow a|m + n$
- $\bullet a|m \text{ et } a|n \Rightarrow a|m n$
- a|m et $a|n \Rightarrow a|\alpha m + \beta n$ où α et β sont des entiers relatifs quelconques.
- $a / b \Rightarrow a^n / b^n \quad n \in \mathbb{N}$

Application

- 1) $a \in \mathbb{Z}$ et $b \in \mathbb{Z}$ et $c \in \mathbb{Z}$ et $x \in \mathbb{Z}$ et $y \in \mathbb{Z}$
- a) montrer que si $\frac{a}{2b+c}$ et $\frac{a}{b+c}$ alors $\frac{a}{c}$
- b) montrer que si $\frac{a}{2b+3c}$ et $\frac{a}{b+c}$ alors $\frac{a}{c}$
- c) montrer que si a/x-y et a/b-c alors a/xb-cy
- 2) $a \in \mathbb{Z}$ et $n \in \mathbb{N}$ et $\frac{a}{12n+1}$ et $\frac{a}{-2n+3}$

Montrer que $\frac{a}{19}$

3) $d \in \mathbb{Z}$ et $a \in \mathbb{Z}$ et $d/n^2 + 3$ et d/2n - 1

Montrer que $\frac{d}{13}$

$$1) \text{ b) } \begin{cases} \frac{a}{2b+3c} \Rightarrow \frac{a}{2b+3c-2(b+c)} \Rightarrow \frac{a}{c} \\ \frac{a}{b+c} \Rightarrow \frac{a}{2b+3c-2(b+c)} \Rightarrow \frac{a}{c} \end{cases}$$
Solution02: 1) a)
$$\begin{cases} \frac{a}{2b+c} \Rightarrow \frac{a}{2b+3c-2(b+c)} \Rightarrow \frac{a}{c} \\ \frac{a}{b+c} \Rightarrow \frac{a}{2b+3c-2(b+c)} \Rightarrow \frac{a}{c} \end{cases}$$
1) c)
$$\begin{cases} \frac{a}{2b+3c} \Rightarrow \frac{a}{2b+3c-2(b+c)} \Rightarrow \frac{a}{c} \\ \frac{a}{b-c} \Rightarrow \frac{a}{2b+3c-2(b+c)} \Rightarrow \frac{a}{b} \end{cases}$$
2)
$$\begin{cases} \frac{a}{2b+3c} \Rightarrow \frac{a}{2b+3c-2(b+c)} \Rightarrow \frac{a}{c} \\ \frac{a}{b-c} \Rightarrow \frac{a}{2b+3c-2(b+c)} \Rightarrow \frac{a}{b} \end{cases}$$
2)
$$\begin{cases} \frac{a}{2b+3c} \Rightarrow \frac{a}{2b+3c-2(b+c)} \Rightarrow \frac{a}{c} \\ \frac{a}{b-c} \Rightarrow \frac{a}{2b+3c-2(b+c)} \Rightarrow \frac{a}{b} \end{cases}$$
3)
$$d \in \mathbb{Z} \text{ et } a \in \mathbb{Z} \text{ et } \frac{d}{a} \end{cases}$$
2)
$$\begin{cases} \frac{a}{2b+3c} \Rightarrow \frac{a}{2b+3c-2(b+c)} \Rightarrow \frac{a}{c} \end{cases}$$
3)
$$d \in \mathbb{Z} \text{ et } a \in \mathbb{Z} \text{ et } \frac{d}{a} \end{cases}$$

2)
$$a/(12n+1)$$
 et $a/(2n+1)$

$$\Rightarrow a/(12n+1)$$
 et $a/(2n-1)$

$$\Rightarrow a/(12n+1)$$
 et $a/(2n-1)$ et $a/(2n-1)$

Application : $a \in \mathbb{Z}$ et $x \in \mathbb{Z}$

Montrer que : $\begin{cases} a/5x-7 \Rightarrow a/29 \\ a/2x+3 \end{cases}$

Solution03:
$$\begin{cases} a/5x - 7 \\ a/2x + 3 \end{cases} \Rightarrow a/2(5x - 7) - 5(2x + 3)$$
$$a/10x - 14 - 10x - 15 \Rightarrow a/-29 \Rightarrow a/29$$

Application Montrer que : $\forall n \in \mathbb{N}$:

3 divise $4^n - 1$

Montrons que : $\forall n \in \mathbb{N} \quad \exists k \in \mathbb{N} / 4^n - 1 = 3k$

1étapes : l'initialisation :Pour n=0 nous avons

 $4^0 - 1 = 0$ est un multiple de 3

Donc P (0) est vraie.

2étapes : d'hérédité : Supposons que P(n) soit

vraie c'est-à-dire : $\exists k \in \mathbb{N} / 4^n - 1 = 3k$ donc

 $4^n = 3k + 1$

3étapes : Nous allons montrer que P(n+1) est vraie. Montrons alors que :

$$\exists k' \in \mathbb{N} / 4^{n+1} - 1 = 3k'$$
 ??

$$4^{n+1}-1=4\times 4^n-1$$

$$=4\times(3k+1)-1=12k+4-1=12k+3=3(4k+1)$$

avec k' = 4k + 1 Donc P(n+1) est vraie.

Conclusion. Par le principe de récurrence on a

 $\forall n \in \mathbb{N}; 4^n - 1$ est divisible par 9

Application : Quelles sont les valeurs de l'entier

relatif n pour lesquelles la fraction $\frac{3n+8}{n+4!}$

Représente un entier relatif?

Solution06 :Cette fraction a un sens si : $n+4 \neq 0$ soit $n \neq -4$

On constate que 3n+8=3(n+4)-4

n+4 divise 3(n+4), donc n+4 divise 3n+8 si n+4 divise -4.

Les diviseurs de -4 sont 1 ; -1 ; 2 ; -2 ; 4 ; -4.

Il faut que $n+4 \in \{-4; -2; -1; 1; 2; 4\}$ ce qui entraine que $n \in \{-8; -6; -5; -3; -2; 0\}$

On vérifie que -4 n'appartient pas à -8 ; -6 ; -5 ; -3 ; -2 ; 0 avant de conclure.

Conclusion : la fraction $\frac{3n+8}{n+4}$ représente un

entier relatif pour les valeurs de l'entier relatif n : -8 ; -6 ;-5 ; -3 ; -2 ; 0.

4 la division euclidienne dans N

Propriété: Considérons a et b deux entiers naturels tels que $b \neq 0$; ils existent deux entiers naturels q et r tels que a = bq + r où $0 \le r < b$

L'entier a s'appelle : Le divisé
L'entier b s'appelle : Le diviseur

• L'entier q s'appelle : Le quotient

• L'entier r s'appelle : Le reste

Remarque : Si r est le reste de la division euclidienne par b alors : $r \in \{0,1, ..., b-1\}$.

Exemple1:

la division euclidienne de 75 par 8 donne :

 $75 = 9 \times 6 + 3 \text{ car } 0 \le 3 < 8$

la division euclidienne de 126 par 7 donne :

 $126 = 18 \times 7 + 0 \text{ car } 0 \le 0 < 7$

la division euclidienne de 85 par 112

donne: $85 = 0 \times 112 + 85$ car $0 \le 85 < 112$

Application déterminer le nombre entier naturel n Tel que le quotient de la division euclidienne de n par 25 est p et le reste est p^2 ($p \in \mathbb{N}$)

Solution08: $n \in \mathbb{N}$: $n = 25p + p^2$ et $0 \le p^2 < 25$ donc $0 \le p < 5$

Donc: $\begin{cases} p=0 \\ n=0 \end{cases} ou \begin{cases} p=1 \\ n=26 \end{cases} ou \begin{cases} p=2 \\ n=54 \end{cases} ou \begin{cases} p=3 \\ n=84 \end{cases} ou \begin{cases} p=4 \\ n=116 \end{cases}$

Donc: $n \in \{0, 26, 54, 84, 116\}$

Application: n et a et b des entiers naturels Démontrer que si q est le quotient de la division euclidienne de n par a et q' est le quotient de q par b Alors q' est aussi le quotient de n par ab

Solution09: soit r le reste de la division euclidienne de n par a et r' le reste de la division euclidienne de q par b on a donc :

n = aq + r et $0 \le r \le a - 1$ et on a : q = bq' + r'

et $0 \le r' \le b-1$ donc on déduit que :

n = a(bq'+r')+r = abq'+ar'+r

Et puisque : $0 \le r' \le b-1$ et $0 \le r \le a-1$ alors

 $ar'+r \le ab-1$ donc n = abq'+ar'+r

 $0 \le ar' + r \le b - 1$ conclusion : q' est aussi le

quotient de n par ab

5 la division euclidienne dans Z

Propriété: Considérons a et b deux entiers relatifs tels que $b \neq 0$; ils existent un entiers relatif q et un entier naturel r

Tels que : a = bq + r où $0 \le r < |b|$

Exemple1:1) la division euclidienne de 37 par -

11 donne: $37 = (-11) \times (-3) + 4 \text{ car } 0 \le 4 < 11$

2)a division euclidienne de -37 par 11

donne: $-37 = 11 \times (-4) + 7 \text{ car } 0 \le 7 < 11$

3) I a division euclidienne de -37 par -11

donne: $-37 = (-11) \times 4 + 7$ car $0 \le 7 < 11$

Application : $b \in \mathbb{N}^*$ et $a \in \mathbb{Z}$

si q est le quotient de la division euclidienne de

a-1 par b déterminer le quotient de la division

euclidienne de ab^9-1 par b^{10}

Solution10 : soit r le reste de la division

euclidienne de a-1 par b donc :

a-1=bq+r et $0 \le r < b$

Donc: $ab^9 - b^9 = b^{10}q + rb^9$

Donc: $ab^9 - 1 = b^{10}q + rb^9 + b^9 - 1$

Donc: $ab^9 - 1 = b^{10}q + (r+1)b^9 - 1$

On montre que : $0 \le (r+1)b^9 - 1 < b^{10}$????

On a : $0 \le r \prec b$ donc $0 \le r + 1 \le b$

donc $0 \le (r+1)b^9 \le b^{10}$ donc $0 \le (r+1)b^9 - 1 \le b^{10} - 1$

donc $0 \le (r+1)b^9 - 1 < b^{10}$

conclusion : q est aussi le quotient de la

division euclidienne de ab^9-1 par b^{10}

II) les nombres premiers

Définitions: a) On dit que l'entier d est un

diviseur **effectif** de l'entier relatif a

Si d|a et $|d| \neq 1$ et $|d| \neq |a|$

b) On dit qu'un entier relatif non nul p est

premier s'il est différent de 1 et s'il n'admet pas de diviseurs effectifs.

Remarques:

- Un nombre premier p admet exactement deux diviseurs positifs 1 et |p|.
- ullet Si p est un nombre premier positif alors p n'admet pas de diviseurs effectifs de même
 - p n'admet pas de diviseurs effectif d'où :
 - -p est aussi premier ;
- Pour l'étude des nombres premiers on se contente d'étudier les nombres premiers positifs.

Propriété : Soit a un entier naturel non nul différent de 1 et non premier, le plus petit

diviseur de $oldsymbol{a}$ diffèrent de 1 est un nombre premier

Exemple1: Les nombres -3 et -7 et 23 sont premiers.

Propriété :Soit n un entier naturel non nul, diffèrent de 1 et non premier, il existe un nombre premier p qui divise l'entier n et qui vérifie $p^2 \le n$.

Corolaire :Si un entier n n'est divisible par aucun entier premier p et qui vérifie $p^2 \le n$ alors n est premier.

Application Les nombres suivants sont-ils premiers :499 ; 601 ; 703 ; 2003 ; $2n^2 + 3n$ $n \in \mathbb{N}$

III) PGDC et PPMC

1 propriétés et définitions

Définition: On dit que le nombre d est **le plus grand diviseur commun** de deux entiers relatifs a et b lorsque d divise a et d divise b et qu'il n'y a pas d'autre plus grands diviseurs de ces deux nombres.

On note $d = PGDC(a, b) = a \wedge b$

Propriétés :1) $a \wedge a = |a|$ 2) $1 \wedge a = 1$

- 3) $(a \wedge b) \wedge c = a \wedge (b \wedge c)$
- 4) Si b|a alors $a \wedge b = |b|$
- 5)si d|a et d|b alors $d|(a \wedge b)$

Application : montrer que $\forall a \in \mathbb{Z} \ a \land (a+1)=1$

Solution11: on pose
$$d = a \land (a+1)$$

 $\Rightarrow \frac{d}{a} \text{ et } \frac{d}{a+1} \Rightarrow \frac{d}{1} \Rightarrow d = 1$

Application $n \in \mathbb{N}$ On considère les deux

nombres: $A = n^2 + 3$ et B = n + 2

- 1) montrer que $A \wedge B = (n+2) \wedge 7$
- 2) déterminer l'entier naturel n tel que : $\frac{n^2+3}{n+2} \in \mathbb{N}$

Solution12:1)on pose
$$d = A \wedge B$$
 et $d' = (n+2) \wedge 7$ $n^2 + 3 - (n+2)(n-2) = 7$
On a : $d = A \wedge B$ $\Rightarrow \frac{d}{A}$ et $\frac{d}{B} \Rightarrow \frac{d}{n^2 + 3}$ et $\frac{d}{n+2}$ $\Rightarrow \frac{d}{n^2 + 3} = (n+2)(n-2)$ $\Rightarrow \frac{d}{n^2 + 3}$ et $\frac{d}{n+2}$ on utilisant la division euclidienne : on trouve : $n^2 + 3 = (n+2)(n-2) + 7$ Inversement : On a : $d' = (n+2) \wedge 7$ $\Rightarrow \frac{d'}{n+2}$ et $\frac{d'}{7} \Rightarrow \frac{d'}{(n+2)(n-2)}$ et $\frac{d'}{7} \Rightarrow \frac{d'}{(n+2)(n-2)}$ et $\frac{d'}{7} \Rightarrow \frac{d'}{(n+2)(n-2)}$ et $\frac{d'}{7} \Rightarrow \frac{d'}{n+2} \in \mathbb{N} \Leftrightarrow n+2/n^2 + 3$ et et on a : $n+2/n+2$ donc : $n+2/n+3$ donc $n+2/n+3$ donc $n+2/n+3$ donc : $n+3/n+3$ donc : $n+3/n$

Définition: On dit que deux entier relatifs a et b sont premiers entre eux si $a \wedge b = 1$.

Application $a \in \mathbb{Z}$ et $b \in \mathbb{Z}$ et $c \in \mathbb{Z}$ et $d \in \mathbb{Z}$

tels que : a = bc + d

- 1) montrer que $a \wedge b = b \wedge d$
- 2) En déduire que : $a \wedge b = b \wedge (a bc)$

2 L'algorithme d'Euclide

Théorème: Soit a un entier naturel et b un entier naturel non nul on a : a = bq + rOù $0 \le r < b$ on a : $a \land b = b \land r$

Propriété: Soient a et b deux entier naturels non nuls.Le plus grand diviseur commun de a et b est le dernier reste non nul dans les divisions euclidiennes successives.

Propriété :Soient a et b deux entier relatifs non nuls

Les diviseurs communs de a et b sont les diviseurs de $a \wedge b$.

On peut dire que : $D_a \cap D_b = D_{a \wedge b}$

Définition: On dit que le nombre entier naturel m est le plus petit multiple commun de deux entiers relatifs a et b lorsque m est un multiple de a et de b et qu'il n'y a pas d'autre plus petit multiple non nuls de ces deux nombres. On note : $m = PPCM(a, b) = a \lor b$

Propriétés :

- 1) $a \lor a = |a|$ 2) $a \lor b = b \lor a$
- 3) $a \vee 1 = |a|$ 4) Si b|a alors $a \vee b = |a|$
- 5) $a \lor (b \lor c) = (a \lor b) \lor c$
- 6) $a|(a \lor b)$; $b|(a \lor b)$ et $(a \lor b)|ab$

Propriété: Considérons a et b deux entiers relatifs. Si $a \lor b = m$ et M un multiple commun de a et b alors m|M.

IV) congruence modulo n

Définition: Soient a et b deux entiers relatifs ; et n un entier naturel non nul. On dit que : a est congrue à b modulo n si n|(b-a).

On écrit : $a \equiv b [n]$

Propriété :Si $a \equiv b$ [n] alors a et b ont le même reste de la division euclidienne sur n

Propriété fondamentale :

- 1) $(\forall a \in \mathbb{Z})(a \equiv a \ [n])$ on dit que la relation de congruence est réflexive.
- 2) $(\forall (a, b) \in \mathbb{Z}^2)(a \equiv b [n] \iff b \equiv a [n])$: on dit que la relation de congruence est symétrique.
- 3) $(\forall (a, b, c) \in \mathbb{Z}^3)$

 $(a \equiv b \ [n] \text{ et } b \equiv c \ [n] \Rightarrow a \equiv c \ [n])$: on dit que la relation de congruence est transitive.

Définition: Puisque la relation est de congruence est réflexive, symétrique et transitive on dit que la relation de congruence est une **relation d'équivalence**

Propriété et définition :Soit n un entier naturel non nul. Si $a \equiv b$ [n] et $c \equiv d$ [n] alors :

- 1) $a + c \equiv b + d$ [n]; On dit que la relation de congruence est compatible avec l'addition dans \mathbb{Z}
- 2) $ac \equiv bd \ [n]$; On dit que la relation de congruence est compatible avec la multiplication dans \mathbb{Z}

Corolaire :Si $a \equiv b$ [n] alors pour tout k dans \mathbb{N} on a : $a^k \equiv b^k [n]$

Remarque: La réciproque du corolaire n'est pas vraie : $2^4 \equiv 3^4 [5]$ mais $2 \not\equiv 3$ [5]

Application: $a \in \mathbb{N}$ et $b \in \mathbb{N}$ Si 17 est le reste de la division euclidienne de a par 19 Et Si 15 est le reste de la division euclidienne de b par 19 Déterminer le reste de la division euclidienne des nombres suivants par 19 :

1)
$$a+b$$
 2) a^2+b^2 3) $2a-5b$

Solution15: 1)On a : a = 17[19] et b = 15[19]

donc: $a+b = 17+15[19] \Leftrightarrow a+b = 13[19]$

Par suite : le reste dans la division du nombre

a+b Par 19 est : 13

2) $a = 17[19] \Rightarrow a^2 = 17^2[19] \Rightarrow a^2 = 4[19]$ $b = 15[19] \Rightarrow b^2 = 15^2[19] \Rightarrow b^2 = 16[19]$

Donc: $a^2 + b^2 = 4 + 16[19] \Leftrightarrow a^2 + b^2 = 1[19]$

Par suite : le reste dans la division du nombre $a^2 + b^2$ Par 19 est · 1

3) $a = 17[19] \Rightarrow 2a = 2 \times 17[19] \Rightarrow 2a = 15[19]$ (1) $b \equiv 15[19] \Rightarrow 5b \equiv 5 \times 15[19] \Rightarrow 5b \equiv 18[19]$

Donc: $5b = -1[19] \Rightarrow -5b = 1[19]$ (2)

De (1) et (2) on déduit que :

 $2a-5b \equiv 15+1[19] \Rightarrow 2a-5b \equiv 16[19]$

Par suite : le reste dans la division du nombre

2a-5b Par 19 est : 16

Application $x \in \mathbb{N}^*$ et $y \in \mathbb{N}^*$ On considère les

deux nombres : a = 9x + 4y et b = 2x + y

1)montrer que $x \wedge y = a \wedge b$

2) $n \in \mathbb{N}$ on pose : $a = n^2 + 5n + 13$ et b = n + 3

a)montrer que $a \wedge b = b \wedge 7$

b)en déduire les valeurs possibles $a \wedge b = d$

c)montrer que : $n = 4[7] \Leftrightarrow a \land b = 7$

d)en déduire les valeurs de $n \in \mathbb{N}$ tel que :

 $a \wedge b = 1$

Solution19:1)on pose $d = x \wedge y$ et $d' = a \wedge b$

montrons que : d = d'

 $d = x \wedge y \text{ donc} : \Rightarrow \frac{d}{x} \text{ et } \frac{d}{v} \Rightarrow \frac{d}{a} \text{ et } \frac{d}{b}$

Car il divise toute combinaison de x et y

 $\Rightarrow \frac{d}{a \wedge b} \Rightarrow \frac{d}{d'}$

Inversement

 $d' = a \wedge b \Rightarrow d'/a \text{ et } d'/b \Rightarrow d'/9x + 4y \text{ et } d'/2x + y$ $\Rightarrow \frac{d'}{(9x+4y)-4(2x+y)} \text{ et } \frac{d'}{9(2x+y)-2(9x+4y)} \quad d' = b \wedge 7 \Rightarrow \frac{d'}{7} \text{ et } \frac{d'}{b} \Rightarrow \frac{d'}{b(n+2)+7} \text{ et } \frac{d'}{b}$ $\Rightarrow d'/x$ et $d'/v \Rightarrow d'/x \land v \Rightarrow d'/d$

ce qui entraine: d = d'

b) les valeurs possibles $a \wedge b = d$??

on a: $a \wedge b = b \wedge 7 = d$

donc: d/7 donc: d=1 ou d=7

c)montrons que : $n = 4[7] \Leftrightarrow a \land b = 7$

 $n = 4[7] \Leftrightarrow n+3 = 0[7] \Leftrightarrow \frac{7}{n+3} \Leftrightarrow \frac{7}{b} \Leftrightarrow b \land 7 = 7 \Leftrightarrow b \land a = 7$

d) les valeurs de $n \in \mathbb{N}$ tel que : $a \wedge b = 1$?? $a \wedge b = 1 \Leftrightarrow n$ n'est pas congrue a 0 modulo 4

n = 0[7] ou n = 1[7] ou n = 2[7] ou n = 3[7] ou n = 5[7]

ou n = 6[7]

ce qui entraine: d = d'

2) $n \in \mathbb{N}$ on pose : $a = n^2 + 5n + 13$ et b = n + 3

a) montrons que $a \wedge b = b \wedge 7$?

la division euclidienne de $n^2+5n+13$ par n+3

donne: $n^2 + 5n + 13 = (n+3)(n+2) + 7$

Donc: $a = b(n+2) + 7 \Leftrightarrow a - b(n+2) = 7$

on pose $d' = b \wedge 7$ et $d = a \wedge b$

montrons que : d = d'

 $d = a \wedge b \Rightarrow \frac{d}{a} \text{ et } \frac{d}{b} \Rightarrow \frac{d}{a - b(n+2)} \text{ et } \frac{d}{b}$

 $\Rightarrow \frac{d}{d} = \frac{d}{d} \Rightarrow \frac{d}{d} \Rightarrow \frac{d}{d}$

 $\Rightarrow d'/a \text{ et } d'/b \Rightarrow d'/a \land b \Rightarrow d'/d$

Les classes d'équivalence

Définition: Soit n un entier naturel non nul. L'ensemble des entiers relatifs qui ont le même reste r de la division euclidienne par n s'appelle

la classe d'équivalence de r et se note : $r = \{m \in \mathbb{Z} \mid m \equiv r \ [n]\} = \{nk + r \ où \ k \in \mathbb{Z}\}$

Exemple: Pour n = 7 les restes possibles sont les éléments de l'ensemble : $\{0,1,2,3,4,5,6\}$ Donc on peut définir les classes d'équivalences suivantes :

$$\begin{array}{l} \overline{0} = \{m \in \mathbb{Z} \mid m \equiv 0 \ [7]\} \\ \overline{1} = \{m \in \mathbb{Z} \mid m \equiv 1 \ [7]\} \ \text{et ...} \\ \overline{6} = \{m \in \mathbb{Z} \mid m \equiv 6 \ [7]\} \\ \text{on remarquer que } \overline{0} = \overline{7} \\ \text{Les classes d'équivalences modulo 7 constituent :un ensemble noté :} \\ \mathbb{Z} \mid 7\mathbb{Z} = \left\{\overline{0}; \overline{1}; \overline{2}; \overline{3}; \overline{4}; \overline{5}; \overline{6}\right\} \end{array}$$

Généralisation :
$$\mathbb{Z} / n\mathbb{Z} = \{\overline{0}; \overline{1}; \overline{2}; \overline{3}; ...; \overline{n-1}\}$$

Les opérations sur Z /nZ

Définition: Soit n un entier naturel non nul.

On définit dans $\mathbb{Z}/n\mathbb{Z}$ les deux lois :

- 1) L'addition : On pose $\overline{a} + \overline{b} = \overline{a+b}$
- 2) La multiplication : On pose : $\overline{a} \times \overline{b} = \overline{a \times b}$

Application: Résoudre les équations suivantes dans $\mathbb{Z}/_{4\mathbb{Z}}$: 1) $\overline{2}x = \overline{3}$ 2) $x^2 + \overline{3}x = \overline{0}$ 3) $\overline{2013}x^3 + \overline{2}x = \overline{k}$

Solution20: On a : $\mathbb{Z}/_{4\mathbb{Z}} = \{\overline{0}, \overline{1}, \overline{2}, \overline{3}\}$

1)On Dresse une table comme suite :

1)OII DICESC UIIC LAN							
х	<u></u>	<u>ī</u>	2	3			
$\overline{2}x$	0	2	0	2			

Et en utilisant cette une table on déduit que Cette équation n'admet pas de solutions

Donc: $S = \emptyset$

1)On Dresse une table comme suite :

x	0	ī	2	3
x^2	0	ī	0	ī
$\overline{3}x$	0	3	2	ī
$x^2 + \overline{3}x$	0	0	2	2

Et en utilisant cette une table on déduit que

 $\overline{0}$ et $\overline{1}$ sont solutions de l'équation

Donc : $S = \{\overline{0}; \overline{1}\}$

2) $\overline{2013}x^3 + \overline{2}x = \overline{k} \Leftrightarrow \overline{1}x^3 + \overline{2}x = \overline{k} \Leftrightarrow x^3 + \overline{2}x = \overline{k}$

Car: $2013 = 503 \times 4 + 1$

On Dresse une table comme suite :

x	0	1	$\overline{2}$	3
x^3	0	ī	0	3
$\overline{2}x$	0	2	0	2
$x^3 + \overline{2}x$	0	3	0	1

Si
$$\overline{k} = \overline{0}$$
 : $S = \{\overline{0}, \overline{2}\}$ Si $\overline{k} = \overline{1}$: $S = \{\overline{3}\}$

Si
$$\overline{k} = \overline{1}$$
: $S = \{\overline{3}\}$

Si
$$\overline{k} = \overline{2}$$
: $S = \emptyset$

Si
$$\overline{k} = \overline{2}$$
: $S = \emptyset$ Si $\overline{k} = \overline{3}$: $S = \{\overline{1}\}$

Application : Résoudre dans $\left(\mathbb{Z}_{5\mathbb{Z}}\right)^2$ les

système suivants : $\begin{cases} \overline{3}x + 2y = 1 \\ \overline{2}x + \overline{4}y = \overline{3} \end{cases}$

Solution22:

$$\begin{cases} \overline{3}x + \overline{2}y = \overline{1} \\ \overline{2}x + \overline{4}y = \overline{3} \end{cases} \Leftrightarrow \begin{cases} (\overline{3} + \overline{2})x + (\overline{2} + \overline{4})y = \overline{3} + \overline{1} \\ \overline{2}x + \overline{4}y = \overline{3} \end{cases}$$

$$\begin{cases} y = \overline{4} \\ \overline{2}x + \overline{4}y = \overline{3} \end{cases} \Leftrightarrow \begin{cases} x = \overline{1} \\ y = \overline{4} \end{cases} \text{ donc } S = \left\{ \left(\overline{1}; \overline{4}\right) \right\}$$

Décomposition d'un nombre entier en facteurs premiers

Théorème :

a)Chaque entier **naturel** m non nul s'écrit d'une façon unique comme le produit des facteurs premiers comme suite :

$$m = p_1^{\alpha_1} \times p_2^{\alpha_2} \times p_3^{\alpha_3} \times ... \times p_n^{\alpha_n} = \prod_{k=1}^{k=n} p_k^{\alpha_k}$$

b) Chaque entier **relatif** m non nul s'écrit d'une façon unique comme le produit des facteurs premiers

comme suite :

$$m = \varepsilon p_1^{\alpha_1} \times p_2^{\alpha_2} \times p_3^{\alpha_3} \times ... \times p_n^{\alpha_n} = \prod_{k=1}^{k=n} p_k^{\alpha_k}$$

où $\varepsilon \in \{-1,1\}$

Propriété 1:Soit a un entier relatif dont la décomposition est de la forme :

$$a = \varepsilon p_1^{\alpha_1} \times p_2^{\alpha_2} \times p_3^{\alpha_3} \times \dots \times p_n^{\alpha_n} = \prod_{k=1}^{k=n} p_k^{\alpha_k}$$

un entier d non nul divise l'entier a si et seulement si d à une décomposition de la forme

$$d=\varepsilon\,p_1^{\,\beta_1}\times p_2^{\,\beta_2}\times p_3^{\,\beta_3}\times ...\times p_n^{\,\beta_n}=\prod_{k=1}^{k=n}p_k^{\,\beta_k}\,\,\delta n\,\,\mathrm{où}$$

$$(\forall i \in [\![1,\,n]\!]\)(0 \leq \beta_i \leq \alpha_i)$$

 δn un diviseur de a le nombre des valeurs possibles de δi est αi + 1 On en déduit que :

Propriété 2 :

$$a = \varepsilon p_1^{\alpha_1} \times p_2^{\alpha_2} \times p_3^{\alpha_3} \times \dots \times p_n^{\alpha_n} = \prod_{k=1}^{k=n} p_k^{\alpha_k}$$

est un entier, le nombre des diviseurs de $\it a$

est:
$$2(\alpha_1+1)(\alpha_2+1)...(\alpha_n+1)$$

Propriété 3 :Soit *a* un entier relatif dont la décomposition est de la forme :

$$a = \varepsilon p_1^{\alpha_1} \times p_2^{\alpha_2} \times p_3^{\alpha_3} \times ... \times p_n^{\alpha_n} = \prod_{k=1}^{k=n} p_k^{\alpha_k}$$

un entier m est un multiple de a si et seulement

si
$$m = \varepsilon p_1^{\beta_1} \times p_2^{\beta_2} \times p_3^{\beta_3} \times ... \times p_n^{\beta_n} = \prod_{k=1}^{k=n} p_k^{\beta_k}$$

où
$$(\forall i \in [1, n]) (\alpha_i \leq \beta_i)$$

Propriété : Soient a et b deux entiers naturels

- 1) Le plus grand entier n qui vérifie :
- $n \le a$ et $n \le b$ est inf (a, b)
- 2) Le plus petit entier n qui vérifie :
- $n \ge a$ et $n \ge b$ est sup (a, b)

Exemple : a = 7 et b = 10

Le plus grand des entiers n tel que $n \le 7$ et $n \le 10$ est : $7 = \inf(10,7)$ Le plus petit des entiers n tel que : $n \ge 7$ et $n \ge 10$ est $10 = \sup(10,7)$

Soient
$$a=\prod_{k=1}^{k=n}p_k^{\alpha_k}$$
 =1 et $b=\prod_{k=1}^{k=n}p_k^{\beta_k}$ deux entiers ;le P . G . D . C (a,b) est l'entier
$$a\wedge b=\prod_{k=1}^{k=n}p_k^{\inf(\alpha_k;\beta_k)}$$

Soient
$$a=\prod_{k=1}^{k=n}p_k^{\alpha_k}$$
 =1 et $b=\prod_{k=1}^{k=n}p_k^{\beta_k}$ deux entiers ; le ppmc (a,b) est l'entier $a\lor b=\prod_{k=1}^{k=n}p_k^{\sup(\alpha_k;\beta_k)}$

Remarque: Soient a et b deux entiers relatifs on a: $a \wedge b = |a| \wedge |b|$

Application : déterminer : $d = (-8316) \land 1080$ et $m = 8316 \lor 1080$

Solution: la décomposition des nombres 8316 et 1080 en produit des facteurs premiers Donnent: $8316 = 2^2 \times 3^3 \times 7 \times 11$ et $1080 = 2^3 \times 3^3 \times 5$ $d = 8316 \wedge 1080 = 2^2 \times 3^3 = 108$ et $m = 8316 \vee 1080 = 2^3 \times 3^3 \times 5 \times 7 \times 11 = 11880$

Propriété: Soient a et b deux entiers relatifs non nuls, on a les assertions suivantes :

- 1) $(a \wedge b) \times (a \vee b) = |ab|$
- 2) $ca \lor cb = c(a \lor b)$
- 3) $ca \wedge cb = c(a \wedge b)$

Application :si $2 = a \wedge b$ et $-12 = a \times b$

déterminer : $a \lor b$

Solution: on a $a \wedge b$) × $(a \vee b) = |ab|$ donc: $a \vee b = |a \times b|/a \wedge b = |-12|/2 = 6$

Application : n et a et b des entiers naturels Démontrer que si q est le quotient de la division euclidienne de n par a et q' est le quotient de qpar b Alors q' est aussi le quotient de n par ab

Solution: soit r le reste de la division euclidienne de n par a et r' le reste de la division euclidienne de q par b on a donc : n=aq+r et $0 \le r \le a-1$ et on a : q=bq'+r' et $0 \le r' \le b-1$ donc on déduit que : n=a(bq'+r')+r=abq'+ar'+r Et puisque : $0 \le r' \le b-1$ et $0 \le r \le a-1$ alors : $ar'+r \le ab-1$ donc n=abq'+ar'+r $0 \le ar'+r \le b-1$ conclusion : q' est aussi le quotient de n par ab

Application Déterminer le reste de la division euclidienne de $19^{52} \times 23^{41}$ par 7

```
Solution25: on a 19 = 5[7] donc 19^2 = 4[7] donc: 19^4 = 2[7] donc 19^{52} = 2^{13}[7] Et on a 23 = 2[7] donc 23^{41} = 2^{41}[7] donc 23^{41} \times 19^{52} = 2^{13} \times 2^{41}[7] donc 23^{41} \times 19^{52} = 2^{13} \times 2^{41}[7] donc 23^{41} \times 19^{52} = 2^{54}[7] donc 23^{41} \times 19^{52} = (2^3)^{18}[7] donc 23^{41} \times 19^{52} = 8^{18}[7] et puisque: 8 = 1[7] donc 23^{41} \times 19^{52} = 1[7] conclusion: 1est le reste de la division euclidienne de 19^{52} \times 23^{41} par 7
```

Application : $n \in \mathbb{N}$ on pose $U_n = 4^n - 3n - 1$

1)montrer que $\forall n \in \mathbb{N}$ $U_{n+1} = 4U_n + 9n$

2) En déduire que $\forall n \in \mathbb{N}$ 9 divise $4^n - 3n - 1$

Solution26:1)on a $U_{n+1}=4^{n+1}-3(n+1)-1$ donc $U_{n+1}=4\times 4^n-3n-3-1$ et puisque : $U_n=4^n-3n-1$ donc : $4^n=U_n+3n+1$ donc : $U_{n+1}=4U_n+9n$ 2) notons P(n) La proposition suivante : « 9 divise U_n » .Nous allons démontrer par récurrence que P(n) est vraie pour tout $n\in\mathbb{N}$. 1étapes : l'initialisation :Pour n=0 nous avons $U_0=4^0-3\times 0-1=0$ donc 9 divise 0 . Donc P (0) est vraie.

2étapes : d'hérédité ou Hypothèse de récurrence : Supposons que P(n) soit vraie c'est-à-dire : « 9 divise U_n » 3étapes : Nous allons montrer que P(n+1) est vraie. Montrons alors que : « 9 divise U_{n+1} » ?? c'est-à-dire Montrons que $U_{n+1}\equiv 0\big[9\big]$?? On a d'après l'hypothèse de récurrence: « 9 divise U_n » donc $U_n\equiv 0\big[9\big]$ donc $4U_n\equiv 0\big[9\big]$

 $U_{n+1} \equiv 0 \big[9 \big]$ Conclusion : $\forall n \in \mathbb{N}$ 9 divise $4^n - 3n - 1$

Et on a : $9n_n \equiv 0[9]$ donc $U_n + 9n_n \equiv 0[9]$ donc