Professeur	Bahloul Khalid (+212) 622-17-65-52
Chapitre	Barycentre (l'essentiel du cours + applications)
Niveaux	Bac français / 1 ^{ère} et 2 ^{ème} Bac International SM

Barycentre dans le plan

I/ Barycentre de deux pointsa) Définition

Théorème et définition _

Soient A et B deux points quelconques, α et β deux réels.

Il existe un unique point G du plan tel que $\alpha \overrightarrow{GA} + \beta \overrightarrow{GB} = \overrightarrow{0}$ si et seulement si $\alpha + \beta \neq 0$. Ce point est appelé barycentre du système de points pondérés (A, α) ; (B, β) . On note $G = \text{Bar } \{(A, \alpha); (B, \beta)\}$.

Exemple: étant donnés deux points A et B, placer $G = Bar \{(A, 2); (B, 1)\}$.

$$G = \text{Bar} \{ (A, 2) ; (B, 1) \}$$

$$\iff 2\overrightarrow{GA} + \overrightarrow{GB} = \overrightarrow{0}$$

$$\iff 2\overrightarrow{GA} + \overrightarrow{GA} + \overrightarrow{AB} = \overrightarrow{0}$$

$$\iff 3\overrightarrow{AG} = \overrightarrow{AB}$$

$$\iff \overrightarrow{AG} = \frac{1}{3}\overrightarrow{AB}$$

$$\stackrel{\bullet}{AB} \xrightarrow{G} \overrightarrow{B}$$

b) Propriétés

Dans tout le paragraphe, A et B sont deux points quelconques, α et β deux réels tels que $\alpha + \beta \neq 0$ et $G = \text{Bar}\{(A, \alpha); (B, \beta)\}$

Homogénéité

_ Propriété _

Soit k un réel. Si $k \neq 0$ alors $G = \text{Bar}\{(A, k\alpha); (B, k\beta)\}.$

Position du barycentre

— Propriété .

Si A et B sont distincts alors $G \in (AB)$. Autrement dit, A, B et G sont alignés. Si, de plus, α et β sont de même signe alors $G \in [AB]$.

Professeur	Bahloul Khalid (+212) 622-17-65-52
Chapitre	Barycentre (l'essentiel du cours + applications)
Niveaux	Bac français / 1 ^{ère} et 2 ^{ème} Bac International SM

$D\'{e}monstration$

$$G = \operatorname{Bar} \{ (A, \alpha); (B, \beta) \} \iff \alpha \overrightarrow{GA} + \beta \overrightarrow{GB} = \overrightarrow{0}$$

Les vecteurs \overrightarrow{GA} et \overrightarrow{GB} sont donc colinéaires et G, A et B sont alignés.

De plus, on a obtenu au cours de la première démonstration le résultat suivant :

$$\overrightarrow{AG} = \frac{\beta}{\alpha + \beta} \overrightarrow{AB}$$

or si α et β sont de même signe alors $\frac{\beta}{\alpha + \beta}$ est positif et inférieur à 1.

Ainsi $G \in [AB]$.

Propriété.

Réciproquement, si $A \neq B$, tout point de la droite (AB) est le barycentre de A et B affectés de coefficients bien choisis.

Démonstration

Si $M \in (AB)$ alors \overrightarrow{AM} et \overrightarrow{AB} sont colinéaires donc il existe un réel k tel que $\overrightarrow{AM} = k\overrightarrow{AB}$.

On a alors:

$$\overrightarrow{AM} = k\overrightarrow{AB} \iff \overrightarrow{AM} - k\overrightarrow{AB} = \overrightarrow{0} \iff \overrightarrow{AM} - k(\overrightarrow{AM} + \overrightarrow{MB}) = \overrightarrow{0}$$
$$\iff \overrightarrow{AM} - k\overrightarrow{AM} - k\overrightarrow{MB} = \overrightarrow{0} \iff (k-1)\overrightarrow{MA} - k\overrightarrow{MB} = \overrightarrow{0}$$

De plus, $k-1-k=-1 \neq 0$ donc $M = \text{Bar}\{(A, k-1); (B, -k)\}.$

Isobarycentre

_ Propriété .

Si $\alpha = \beta$, alors G est appelé isobarycentre de A et B. G est alors le milieu du segment [AB].

Réduction vectorielle

Propriété_

Quel que soit le point M, $\alpha \overrightarrow{MA} + \beta \overrightarrow{MB} = (\alpha + \beta) \overrightarrow{MG}$.

Indication => intercaler le point M dans l'expression du barycentre

c) Coordonnées du barycentre

Propriété

Soit $(O; \overrightarrow{i}, \overrightarrow{j})$ un repère du plan. Soit $A(x_A; y_A)$ et $B(x_B; y_B)$.

Si
$$G = \text{Bar}\{(A, \alpha); (B, \beta)\}$$
 alors $G\left(\frac{\alpha x_A + \beta x_B}{\alpha + \beta}; \frac{\alpha y_A + \beta y_B}{\alpha + \beta}\right)$

Dans un repère de l'espace, il suffit de faire le même calcul sur la troisième coordonnée.

Professeur	Bahloul Khalid (+212) 622-17-65-52
Chapitre	Barycentre (l'essentiel du cours + applications)
Niveaux	Bac français / 1 ^{ère} et 2 ^{ème} Bac International SM

Démonstration

Quel que soit le point M, on a $\alpha \overrightarrow{MA} + \beta \overrightarrow{MB} = (\alpha + \beta) \overrightarrow{MG}$.

Cette égalité est donc valable en particulier pour ${\cal M}={\cal O}.$

On a donc
$$\alpha \overrightarrow{OA} + \beta \overrightarrow{OB} = (\alpha + \beta) \overrightarrow{OG}$$
 soit $\overrightarrow{OG} = \frac{\alpha}{\alpha + \beta} \overrightarrow{OA} + \frac{\beta}{\alpha + \beta} \overrightarrow{OB}$

Les coordonnées de \overrightarrow{OA} sont $\begin{pmatrix} x_A \\ y_A \end{pmatrix}$ et les coordonnées de \overrightarrow{OB} sont $\begin{pmatrix} x_B \\ y_B \end{pmatrix}$.

On en déduit que les coordonnées de \overrightarrow{OG} sont $\begin{pmatrix} \frac{\alpha}{\alpha+\beta}x_A + \frac{\beta}{\alpha+\beta}x_B \\ \frac{\alpha}{\alpha+\beta}y_A + \frac{\beta}{\alpha+\beta}y_B \end{pmatrix} = \begin{pmatrix} \frac{\alpha x_A + \beta x_B}{\alpha+\beta} \\ \frac{\alpha y_A + \beta y_B}{\alpha+\beta} \end{pmatrix}$.

Application

Dans un repère du plan, on a A(3;-2) et B(-1; 4). Déterminer les coordonnées de G barycentre de (A, 2): (B, 3).

$$\begin{cases} x_G = \frac{2 \times x_A + 3 \times x_B}{2+3} = \frac{2 \times 3 + 3 \times (-1)}{5} = \frac{3}{5} \\ y_G = \frac{2 \times y_A + 3 \times y_B}{2+3} = \frac{2 \times (-2) + 3 \times 4}{5} = \frac{8}{5} \end{cases}$$

Ainsi G(3/5;8/5)

II/ Barycentre de trois points

a) Définitions

Théorème et définition

Soient A, B et C trois points quelconques, α , β et γ trois réels.

Il existe un unique point G du plan tel que $\alpha \overrightarrow{GA} + \beta \overrightarrow{GB} + \gamma \overrightarrow{GC} = \overrightarrow{0}$ si et seulement si $\alpha + \beta + \gamma \neq 0$.

Ce point est appelé barycentre du système de points pondérés (A, α) ; (B, β) ; (C, γ) . On note $G = \text{Bar}\{(A, \alpha); (B, \beta); (C, \gamma)\}$

Démonstration

Quels que soient α , β et γ :

$$\alpha \overrightarrow{GA} + \beta \overrightarrow{GB} + \gamma \overrightarrow{GC} = \overrightarrow{0} \iff \alpha \overrightarrow{GA} + \beta (\overrightarrow{GA} + \overrightarrow{AB}) + \gamma (\overrightarrow{GA} + \overrightarrow{AC}) = \overrightarrow{0}$$

$$\iff \alpha \overrightarrow{GA} + \beta \overrightarrow{GA} + \beta \overrightarrow{AB} + \gamma \overrightarrow{GA} + \gamma \overrightarrow{AC} = \overrightarrow{0}$$

$$\iff (\alpha + \beta + \gamma) \overrightarrow{GA} = -\beta \overrightarrow{AB} - \gamma \overrightarrow{AC}$$

$$\iff (\alpha + \beta + \gamma) \overrightarrow{AG} = \beta \overrightarrow{AB} + \gamma \overrightarrow{AC}$$

1/ Si $\alpha + \beta + \gamma \neq 0$ alors l'équation équivaut à

$$\overrightarrow{AG} = \frac{\beta}{\alpha + \beta + \gamma} \overrightarrow{AB} + \frac{\gamma}{\alpha + \beta + \gamma} \overrightarrow{AC}$$

Le point G existe et est unique.

2/ Si $\alpha + \beta + \gamma = 0$ alors l'équation équivaut à $\beta \overrightarrow{AB} + \gamma \overrightarrow{AC} = \overrightarrow{0}$. Cette n'équation n'admet pas de solution si $\beta \overrightarrow{AB} + \gamma \overrightarrow{AC} \neq \overrightarrow{0}$ et en admet une infinité si $\beta \overrightarrow{AB} + \gamma \overrightarrow{AC} = \overrightarrow{0}$.

Professeur	Bahloul Khalid (+212) 622-17-65-52
Chapitre	Barycentre (l'essentiel du cours + applications)
Niveaux	Bac français / 1 ^{ère} et 2 ^{ème} Bac International SM

b) Associativité du barycentre

Propriété_

Soient
$$A, B$$
 et C trois points, α, β et γ trois réels tels que $\alpha + \beta + \gamma \neq 0$ et $\alpha + \beta \neq 0$.
Si $\begin{cases} G = \text{Bar}\{(A, \alpha); (B, \beta); (C, \gamma)\} \\ H = \text{Bar}\{(A, \alpha); (B, \beta)\} \end{cases}$ alors $G = \text{Bar}\{(H, \alpha + \beta); (C, \gamma)\}$

Supposons que
$$\begin{cases} G = \operatorname{Bar} \left\{ (A, \alpha) ; (B, \beta) ; (C, \gamma) \right\} \\ H = \operatorname{Bar} \left\{ (A, \alpha) ; (B, \beta) \right\} \\ \text{On a alors :} \\ (\alpha + \beta) \overrightarrow{GH} + \gamma \overrightarrow{GC} = \alpha \overrightarrow{GH} + \beta \overrightarrow{GH} + \gamma \overrightarrow{GC} = \alpha \overrightarrow{GA} + \alpha \overrightarrow{AH} + \beta \overrightarrow{GB} + \beta \overrightarrow{BH} + \gamma \overrightarrow{GC} \\ = \alpha \overrightarrow{GA} + \beta \overrightarrow{GB} + \gamma \overrightarrow{GC} + \alpha \overrightarrow{AH} + \beta \overrightarrow{BH} = \overrightarrow{0} \end{cases}$$

$$Conclusion :$$

$$G = \operatorname{Bar} \left\{ (H, \alpha + \beta) ; (C, \gamma) \right\}$$

Application

Construire $G = Bar\{(A, 4); (B, -5)\}$

Solution:
$$G = Bar\{(A, 4); (B, -5)\}$$
 donc:
 $4\overline{AG} - 5\overline{BG} = \overline{0}$
 $4\overline{AG} + 5(\overline{GA} + \overline{AB}) = \overline{0} \Leftrightarrow -4\overline{GA} + 5\overline{GA} + 5\overline{AB} = \overline{0}$
 $\Leftrightarrow \overline{GA} + 5\overline{AB} = \overline{0} \Leftrightarrow \overline{AG} = 5\overline{AB}$
Donc le point $G \in (AB)$

c) Propriétés

Dans tout le paragraphe, A, B et C sont trois points quelconques, α , β et γ trois réels tels que $\alpha + \beta + \gamma \neq 0$ et $G = \text{Bar}\{(A, \alpha); (B, \beta); (C, \gamma)\}$

Homogénéité

Propriété

Soit k un réel. Si $k \neq 0$ alors $G = \text{Bar}\{(A, k\alpha); (B, k\beta); (C, k\gamma)\}.$

Professeur	Bahloul Khalid (+212) 622-17-65-52
Chapitre	Barycentre (l'essentiel du cours + applications)
Niveaux	Bac français / 1 ^{ère} et 2 ^{ème} Bac International SM

```
Démonstration

Si k \neq 0 alors :

G = \text{Bar} \{ (A, \alpha); (B, \beta); (C, \gamma) \} \iff \alpha \overrightarrow{GA} + \beta \overrightarrow{GB} + \gamma \overrightarrow{GC} = \overrightarrow{0}

\iff k(\alpha \overrightarrow{GA} + \beta \overrightarrow{GB} + \gamma \overrightarrow{GC}) = k \overrightarrow{0}

\iff k\alpha \overrightarrow{GA} + k\beta \overrightarrow{GB} + k\gamma \overrightarrow{GC} = \overrightarrow{0}

\iff G = \text{Bar} \{ (A, k\alpha); (B, k\beta); (C, k\gamma) \}
```

Position du barycentre

– Propriété -

Si A, B et C ne sont pas alignés alors $G \in (ABC)$. Autrement dit, A, B, C et G sont coplanaires.

- Démonstration
$$G = \text{Bar} \{(A, \alpha); (B, \beta); (C, \gamma)\} \iff \alpha \overrightarrow{GA} + \beta \overrightarrow{GB} + \gamma \overrightarrow{GC} = \overrightarrow{0}$$
Les vecteurs \overrightarrow{GA} , \overrightarrow{GB} et \overrightarrow{GC} sont donc coplanaires. Ainsi les points A, B, C et G sont coplanaires.

Propriété

Réciproquement, si A, B et C ne sont pas alignés, alors tout point du plan (ABC) est le barycentre de A, B et C affectés de coefficients bien choisis.

Tout vecteur du plan s'exprime de façon unique comme combinaison linéaire d'une base de deux vecteurs

```
■ Démonstration
Si M \in (ABC) alors il existe des réels k et k' tel que :
\overrightarrow{AM} = k\overrightarrow{AB} + k'\overrightarrow{AC} = k\overrightarrow{AM} + k\overrightarrow{MB} + k'\overrightarrow{AM} + k'\overrightarrow{MC}
On a alors (1 - k - k')\overrightarrow{MA} + k\overrightarrow{MB} + k'\overrightarrow{MC} = \overrightarrow{0}
donc M = \text{Bar}\{(A, 1 - k - k'); (B, k); (C, k')\}.
```

Isobarycentre

_ Propriété .

Si $\alpha = \beta = \gamma$, alors G est appelé isobarycentre de A, B et C. G est alors le centre de gravité du triangle ABC.

Indication => écrire la relation du barycentre avec $\alpha = \beta = \gamma$, => $\overrightarrow{GA} + \overrightarrow{GB} + \overrightarrow{GC} = \overrightarrow{0}$

Réduction vectorielle

Professeur	Bahloul Khalid (+212) 622-17-65-52
Chapitre	Barycentre (l'essentiel du cours + applications)
Niveaux	Bac français / 1 ^{ère} et 2 ^{ème} Bac International SM

Propriété

Quel que soit le point M, $\alpha \overrightarrow{MA} + \beta \overrightarrow{MB} + \gamma \overrightarrow{MC} = (\alpha + \beta + \gamma) \overrightarrow{MG}$.

Insérer le point M dans la définition du barycentre

Démonstration Quel que soit le point
$$M$$
,
$$\alpha \overrightarrow{MA} + \beta \overrightarrow{MB} + \gamma \overrightarrow{MC} = \alpha (\overrightarrow{MG} + \overrightarrow{GA}) + \beta (\overrightarrow{MG} + \overrightarrow{GB}) + \gamma (\overrightarrow{MG} + \overrightarrow{GC})$$
$$= \alpha \overrightarrow{MG} + \alpha \overrightarrow{GA} + \beta \overrightarrow{MG} + \beta \overrightarrow{GB} + \gamma \overrightarrow{MG} + \gamma \overrightarrow{GC}$$
$$= (\alpha + \beta + \gamma) \overrightarrow{MG} + \alpha \overrightarrow{GA} + \beta \overrightarrow{GB} + \gamma \overrightarrow{GC}$$
$$= (\alpha + \beta + \gamma) \overrightarrow{MG}$$

d) Coordonnées du Barycentre

Propriété

Soit $(O; \overrightarrow{\imath}, \overrightarrow{\jmath})$ un repère du plan. Soit $A(x_A; y_A)$, $B(x_B; y_B)$ et $C(x_C; y_C)$. Si $G = \text{Bar}\{(A, \alpha); (B, \beta); (C, \gamma)\}$ alors $G\left(\frac{\alpha x_A + \beta x_B + \gamma x_C}{\alpha + \beta + \gamma}; \frac{\alpha y_A + \beta y_B + \gamma y_C}{\alpha + \beta + \gamma}\right)$ Dans un repère de l'espace, il suffit de faire le même calcul sur la troisième coordonnée.

La démonstration est identique au cas de deux points

Application

Dans un repère du plan, on a A(2;-1), B(0; 3) et C(-2; 0). Déterminer les coordonnées de G barycentre de (A, 1); (B, 3); (C,-2).

$$\begin{cases} x_G = \frac{x_A + 3 \times x_B - 2 \times x_C}{1 + 3 - 2} = \frac{2 + 3 \times 0 - 2 \times (-2)}{2} = 3\\ y_G = \frac{y_A + 3 \times y_B - 2 \times y_C}{1 + 3 - 2} = \frac{-1 + 3 \times 3 - 2 \times 0}{2} = 4 \end{cases}$$
Ainsi $G(3; 4)$

III/Barycentre d'un nombre quelconque de points

Toutes les définitions et propriétés précédentes se généralisent à n points pondérées.