Professeur	Bahloul Khalid (+212) 622-17-65-52
Chapitre	Dérivation et étude des fonctions (l'essentiel du cours + applications)
Niveaux	Bac français / 1 ^{ère} et 2 ^{ème} Bac International SM

Dérivation et étude des fonctions

Rappels

Exercice1:

1- Montrer en utilisant la définition que la fonction

$$f(x) = x^2 + x - 3$$
 est dérivable en $a = -2$.

2) soit f une fonction définie par :

$$\begin{cases} f(x) = \sqrt{x} \dots x \ge 1 \\ f(x) = \frac{1}{4}x^2 + \frac{3}{4} \dots x < 1 \end{cases}$$

étudier la dérivabilité de f en $x_0 = 1$

3) Soit f la fonction définie sur $\mathbb R$ par :

$$\begin{cases} f(x) = 3x^2 + x; x < 0 \\ f(x) = -2x^2 + 3x; x \ge 0 \end{cases}$$

étudier la dérivabilité de f en $x_0 = 0$

Solution:

1)
$$\lim_{x \to 2} \frac{f(x) - f(-2)}{x - (-2)} = \lim_{x \to 2} \frac{x^2 + x - 3 + 1}{x + 2} = \lim_{x \to 2} \frac{x^2 + x - 3}{x + 2}$$

$$= \lim_{x \to -2} \frac{(x+2)(x-1)}{x+2} = \lim_{x \to -2} x - 1 = -3 = f'(-2)$$

Donc f est dérivable en en -2 et f'(-2) = -3

on a $f(1) = \sqrt{1} = 1$

2)
$$\lim_{x \to 1^+} \frac{f(x) - f(1)}{x - 1} = \lim_{x \to 0^+} \frac{\sqrt{x} - 1}{x - 1} = \lim_{x \to 0^+} \frac{\sqrt{x} - 1}{\left(\sqrt{x}\right)^2 - 1^2}$$

$$= \lim_{x \to 0^+} \frac{1}{\sqrt{x} + 1} = \frac{1}{2} = f'_d(1)$$

Donc f est dérivable à droite en 1

1)
$$\lim_{x \to 2} \frac{f(x) - f(-2)}{x - (-2)} = \lim_{x \to 2} \frac{x^2 + x - 3 + 1}{x + 2} = \lim_{x \to 2} \frac{x^2 + x - 2}{x + 2}$$
 $\lim_{x \to 1^-} \frac{f(x) - f(1)}{x - 1} = \lim_{x \to 1^-} \frac{\frac{1}{4}x^2 + \frac{3}{4} - 1}{x - 1} = \lim_{x \to 1^-} \frac{1}{4}(x + 1) = \frac{1}{2} = f'_g(1)$

Donc f est dérivable à gauche en 1

et on a :
$$f'_{d}(1) = f'_{g}(1)$$

Donc f est dérivable en 1 et $f'(1) = \frac{1}{2}$

3)
$$\lim_{x \to 0^+} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0^+} \frac{-2x^2 + 3x}{x} = \lim_{x \to 0^+} -2x + 3 = 3 = f'_d(0)$$

3 s'appelle le nombre dérivé de la fonction f à droite de 0

On dit que f est dérivable à droite en 0

$$\lim_{x \to 0^{-}} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0^{-}} \frac{3x^2 + x}{x} = \lim_{x \to 0^{-}} 3x + 1 = 1 = f_{g}'(0)$$

1 s'appelle le nombre dérivé de la fonction f à gauche de 0

On dit que f est dérivable à gauche en 0

Mais on a : $f'_d(0) \neq f'_g(0)$

Donc : f n'est pas dérivable en 0.

Professeur	Bahloul Khalid (+212) 622-17-65-52	
Chapitre	Dérivation et étude des fonctions (l'essentiel du cours + applications)	
Niveaux	Bac français / 1 ^{ère} et 2 ^{ème} Bac International SM	

Exercice 2: soit f une fonction définie par :

$$\begin{cases} f(x) = (1+x)\sqrt{1-x^2} \dots 0 \le x \le 1 \\ f(x) = \sqrt{x^3 - x} \dots x > 1 \end{cases}$$

1)déterminer le domaine de définition de f

2)étudier la dérivabilité de f à droite en $x_0 = 0$ et donner une interprétation géométrique du résultat

3) étudier la dérivabilité de f à droite et à gauche

en $x_0 = 1$ et donner une interprétation géométrique

Indication => cherchez à utiliser l'expression conjuguée pour les limites en un point

Solution :1) $x \in D_f \Leftrightarrow 1 - x^2 \ge 0$ et $0 \le x \le 1$

ou
$$x^3 - x \ge 0$$
 et $x > 1$

$$x \in D_f \Leftrightarrow -1 \le x \le 1$$
 ou $x > 1$

$$x \in D_f \Leftrightarrow x \in \left[0; +\infty\right[\text{ donc : } D_f = \left[0; +\infty\right[$$

2) étude de la dérivabilité de f à droite de $x_0 = 0$

On a : f(0)=1

$$\frac{f(x) - f(0)}{x - 0} = \frac{(1 + x)\sqrt{1 - x^2} - 1}{x} = \frac{x\sqrt{1 - x^2} + \sqrt{1 - x^2} - 1}{x}$$

$$= \sqrt{1 - x^2} - \frac{x^2}{x(\sqrt{1 - x^2} + 1)} = \sqrt{1 - x^2} - \frac{x}{\sqrt{1 - x^2} + 1}$$

3)a)étudie de la dérivabilité de f à gauche en

$$x_0 = 1$$
 On a: $f(1) = 0$ soit $0 \le x \le 1$

$$\frac{f(x) - f(1)}{x - 1} = \frac{(1 + x)\sqrt{1 - x^2}}{x - 1} = \frac{(1 + x)(1 - x^2)}{(x - 1)\sqrt{1 - x^2}} = \frac{-(1 + x)^2}{\sqrt{1 - x^2}}$$

Et puisque : $\lim_{x \to 1^{-}} \sqrt{1 - x^2} = 0^+$ et $\lim_{x \to 1^{-}} -(1 + x)^2 = -4$

Alors:
$$\lim_{x \to 1^-} \frac{-(1+x)^2}{\sqrt{1-x^2}} = -\infty$$
 donc: $\lim_{x \to 1^-} \frac{f(x)-f(1)}{x-1} = -\infty$

Donc f n'est pas dérivable à gauche en $x_0 = 1$

Donc:
$$\lim_{x\to 0^+} \frac{f(x)-f(0)}{x-0} = 1 = f'_d(0)$$

Donc f est dérivable à droite en 0

Interprétation géométrique du résultat :

La courbe de f admet un demi tangent en

A(0, 1).de coefficient directeur $1 = f'_d(0)$

b)soit x > 1

$$\frac{f(x)-f(1)}{x-1} = \frac{\sqrt{x^3-x}-0}{x-1} = \frac{x(x+1)(x-1)}{(x-1)\sqrt{x^3-x}} = \frac{x^2+x}{\sqrt{x^3-x}}$$

Et puisque : $\lim_{x\to 1^+} \sqrt{x^3 - x} = 0^+$ et $\lim_{x\to 1^+} x^2 + x = 2$

Alors:
$$\lim_{x \to 1^+} \frac{x^2 + x}{\sqrt{x^3 - x}} = +\infty$$
 donc: $\lim_{x \to 1^+} \frac{f(x) - f(1)}{x - 1} = +\infty$

Donc f n'est pas dérivable à droite en $x_0 = 1$

Interprétation géométrique du résultat :

La courbe de f admet un demi tangent en A(1,0) parallèle à l'axe des ordonnées dirigé vers le le haut

Définition

Soit f une fonction numérique définie sur un intervalle ouvert de centre a. On dit que f est dérivable en a si la limite

$$\lim_{x \to a} \frac{f(x) - f(a)}{x - a}$$
 existe et est finie

Professeur	Bahloul Khalid (+212) 622-17-65-52
Chapitre	Dérivation et étude des fonctions (l'essentiel du cours + applications)
Niveaux	Bac français / 1 ^{ère} et 2 ^{ème} Bac International SM

Propriété: Soit f une fonction dérivable en a. f admet une fonction affine tangente en a de la

forme : u(x) = f'(a)(x-a) + f(a)

Propriété: Toute fonction dérivable en a est continue en a.

II- fonction dérivée et opérations sur les dérivées

1) Dérivabilité sur un intervalle.

Définition : Soit f une fonction dont l'ensemble de définition est Df , a et b deux éléments de Df tels que :a < b

- 1) On dit que f est dérivable sur l'ouvert] a, b[si elle est dérivable en tout point de]a, b[
- 2) On dit que f est dérivable sur le semi-ouvert [a, b[si elle est dérivable sur]a, b[et dérivable à droite de a
- 3) On dit que f est dérivable sur le fermé [a, b] si elle est dérivable sur]a, b[et dérivable à droite de a et à gauche de b

2) fonction dérivée

Définition: Soit f une fonction dérivable sur un intervalle ouvert I. La fonction qui associe à tout

élément x son nombre dérivé f'(x) s'appelle la fonction dérivée de la fonction f sur I.

Professeur	Bahloul Khalid (+212) 622-17-65-52
Chapitre	Dérivation et étude des fonctions (l'essentiel du cours + applications)
Niveaux	Bac français / 1 ^{ère} et 2 ^{ème} Bac International SM

3) fonctions dérivées usuelles (à apprendre par cœur)

La fonction f	Sa fonction dérivée f'	Intervalles de dérivation
С	0	R
x	1	R
χ^2	2 <i>x</i>	\mathbb{R}
x^n	nx^{n-1}	R
\sqrt{x}	$\frac{1}{2\sqrt{x}}$	R*+
$\frac{1}{x}$	$\frac{2\sqrt{x}}{-1}$	\mathbb{R}^{*+} et \mathbb{R}^{*-}
cos	-sin	R
sin	cos	\mathbb{R}
tanx	$1 + tan^2x$	$]\frac{-\pi}{2} + k\pi, \frac{-\pi}{2} + k\pi[, k \in \mathbb{Z}]$

4) opérations sur les fonctions dérivées

La fonction	Sa fonction dérivée
f + g	f'+g'
f.g	f'.g + g'.f
1	$\frac{-g'}{g}$
g	g^2
$\frac{f}{a}$	$\frac{f' \cdot g - g' \cdot f}{g^2}$
\sqrt{f}	$\frac{f'}{2\sqrt{f}}$
f(ax+b)	af'(ax+b)

Exercice 3

Etudier le domaine de dérivation de f et déterminer sa fonction dérivée dans les cas suivants:

1)
$$f(x) = x^2 + 3x - 1$$

2)
$$f(x) = 4\sin x$$

3)
$$f(x) = x^4 \cos x$$

4)
$$f(x) = \sqrt{x} + x^2$$

$$5) \ f(x) = \frac{1}{\sqrt{x}}$$

1)
$$f(x) = x^2 + 3x - 1$$
 2) $f(x) = 4\sin x$
3) $f(x) = x^4 \cos x$ 4) $f(x) = \sqrt{x} + x^3$
5) $f(x) = \frac{1}{\sqrt{x}}$ 6) $f(x) = \frac{6}{4x^2 + 3x - 1}$
7) $f(x) = \frac{4x - 3}{2x - 1}$ 8) $f(x) = \sqrt{x^2 - 4}$

7)
$$f(x) = \frac{4x-3}{2x-1}$$

8)
$$f(x) = \sqrt{x^2 - 4}$$

9)
$$f(x) = (2x+3)^5$$

Professeur	Bahloul Khalid (+212) 622-17-65-52
Chapitre	Dérivation et étude des fonctions (l'essentiel du cours + applications)
Niveaux	Bac français / 1 ^{ère} et 2 ^{ème} Bac International SM

Solution: 1) $f(x) = x^2 + 3x - 1$ $D_f = \mathbb{R}$

f est une fonction polynôme donc dérivable sur $\mathbb R$

$$\forall x \in \mathbb{R} \ f'(x) = (x^2)' + (3x - 1)' = 2x + 3$$

2)
$$f(x) = 4\sin x$$
 $D_f = \mathbb{R}$

$$f(x) = 4u(x)$$
 avec $u(x) = \sin x$

Puisque u est dérivable sur $\mathbb R$ alors f est une fonction dérivable sur $\mathbb R$

$$\forall x \in \mathbb{R} \ f'(x) = 4(u(x))' = 4\cos x$$

4)
$$f(x) = \sqrt{x} + x^3$$
 $D_f = \mathbb{R}^+ = [0; +\infty[$

$$f(x) = u(x) + v(x)$$
 avec $u(x) = \sqrt{x}$ et $v(x) = x^3$

Puisque u est dérivables sur \mathbb{R}_+^* et v est

dérivables en particulier sur $\mathbb{R}_{_{+}}^{^{*}}$ alors f est une

fonction dérivable sur \mathbb{R}_{+}^{*}

$$\forall x \in \mathbb{R}_{+}^{*} : f'(x) = (u(x))' + (v(x))' = \frac{2}{2\sqrt{x}} + 3x^{2}$$

6)
$$f(x) = \frac{6}{4x^2 + 3x - 1}$$
 $D_f = \mathbb{R} - \left\{-1; \frac{1}{4}\right\}$

Puisque f est une fonction rationnelle alors il

dérivable sur
$$D_f = \mathbb{R} - \left\{-1; \frac{1}{4}\right\}$$

7)
$$f(x) = \frac{4x-3}{2x-1}$$
 $D_f = \mathbb{R} - \left\{ \frac{1}{2} \right\}$

Puisque f est une fonction rationnelle alors il dérivable sur $D_f = \mathbb{R} - \left\{ \frac{1}{2} \right\}$

$$f(x) = u(x)/v(x) \text{ avec } u(x) = 4x - 3 \text{ et}$$

$$v(x) = 2x - 1$$

On utilise la formule : $\left(\frac{u}{v}\right)' = \frac{u'v - uv'}{v^2}$

$$f'(x) = \left(\frac{4x-3}{2x-1}\right)' = \frac{(4x-3)'(2x-1)-(4x-3)(2x-1)'}{(2x-1)^2} = \frac{4(2x-1)-2\times(4x-3)}{(2x-1)^2}$$
$$f'(x) = \frac{4(2x-1)-2\times(4x-3)}{(2x-1)^2} = \frac{8x-4-8x+6}{(2x-1)^2} = \frac{2}{(2x-1)^2}$$

3)
$$f(x) = x^4 \cos x$$
 $D_f = \mathbb{R}$

$$f(x) = u(x) \times v(x)$$
 avec $u(x) = x^4$ et $v(x) = \cos x$

Puisque u et v sont dérivables sur $\mathbb R$ alors f est une fonction dérivable sur $\mathbb R$

On utilise la formule : $(u \times v)' = u' \times v + u \times v'$

$$f'(x) = ((x^4) \times (\cos x))' = (x^4)' \times (\cos x) + (x^4) \times (\cos x)'$$

$$f'(x) = 4x^3 \times (\cos x) - x^4 \times \sin x = 4x^3 \cos x - x^4 \times \sin x$$

5)
$$f(x) = \frac{1}{\sqrt{x}}$$
 $D_f = \mathbb{R}^{*+} =]0; +\infty[$

On a:
$$f(x) = \frac{1}{u(x)}$$
 avec $u(x) = \sqrt{x}$

Puisque u est dérivables sur \mathbb{R}^*

Donc f est dérivables sur \mathbb{R}_{+}^{*}

On utilise la formule : $\left(\frac{1}{u}\right)' = -\frac{u'}{u^2}$

$$\forall x \in \mathbb{R}_+^* : f'(x) = \frac{1}{2x\sqrt{x}}$$

est on a :
$$f(x) = \frac{6}{u(x)}$$
 avec $u(x) = 4x^2 + 3x - 1$

$$f'(x) = 6\left(\frac{1}{u(x)}\right)' = 6\left(-\frac{u'}{u^2}\right) = -6\frac{\left(4x^2 + 3x - 1\right)'}{\left(4x^2 + 3x - 1\right)^2} - 6\frac{8x + 3}{\left(4x^2 + 3x - 1\right)^2}$$

8)
$$f(x) = \sqrt{x^2 - 4}$$
 : $D_f =]-\infty; -2] \cup [2; +\infty[$

On a:
$$f(x) = \sqrt{u(x)}$$
 avec $u(x) = x^2 - 4$

Et on a :
$$u(x) \succ 0 \quad \forall x \in D_f - \{-2, 2\}$$

Donc f est dérivables sur $D_f - \{-2, 2\}$

$$\forall x \in D_f - \{-2, 2\}$$
:

$$f'(x) = (\sqrt{x^2 - 4})' = \frac{(x^2 - 4)'}{2\sqrt{x^2 - 4}} = \frac{x}{\sqrt{x^2 - 4}}$$

Professeur	Bahloul Khalid (+212) 622-17-65-52
Chapitre	Dérivation et étude des fonctions (l'essentiel du cours + applications)
Niveaux	Bac français / 1 ^{ère} et 2 ^{ème} Bac International SM

9)
$$f(x) = (2x+3)^5$$
 $D_f = \mathbb{R}$
 $f(x) = (u(x))^5$ avec $u(x) = 2x+3$
On utilise la formule : $(u^n)' = mu^{n-1} \times u'$
 $f'(x) = ((2x+3)^5)' = 5 \times (2x+3)^{5-1} \times (2x+3)' = 5 \times 2 \times (2x+3)^4 = 10(2x+3)^4$

III- Dérivation de la composition de fonctions

Théorème: Soient f une fonction définie sur un intervalle I et g une fonction définie sur un intervalle J telles que $f(I) \subset J$ et g un élément de g.

- 1) Si f est dérivable en a et g dérivable en b = f(a) alors $(g \circ f)$ est dérivable en a et $(g \circ f)'(a) = g'(f(a)) \times f'(a)$
- 2) Si f est dérivable sur I et g dérivable sur J alors $(g \circ f)$ est dérivable sur I et pour tout a dans I on a : $(g \circ f)'(a) = g'(f(a)) \times f'(a)$

Démonstration => écrire (gof)'(a) divisez et multipliez par f(x)-f(a)

Exercice 4

Déterminer les fonctions dérivées des fonctions suivantes

1)
$$f(x) = \sin(2x^2 - 1)$$

$$2) f(x) = \cos\left(\frac{1}{x^2 + 2}\right)$$

$$3) f(x) = \tan \cos(x)$$

Professeur	Bahloul Khalid (+212) 622-17-65-52
Chapitre	Dérivation et étude des fonctions (l'essentiel du cours + applications)
Niveaux	Bac français / 1 ^{ère} et 2 ^{ème} Bac International SM

IV- Dérivation de la fonction réciproque

Théorème: Soient f une fonction continue strictement monotone sur I, et J = f(I) et a un élément de I

1) Si f est dérivable en y_0 et $f'(y_0) \neq 0$ alors f^{-1} est dérivable en $x_0 = f(y_0)$

Et:
$$(f^{-1})'(x_0) = \frac{1}{f'(f^{-1}(x_0))}$$

2) Si f est dérivable I et f' ne s'annule pas sur I alors f^{-1} est dérivable sur J et

$$(\forall x \in J) \quad (f^{-1})'(x) = \frac{1}{f'(f^{-1}(x))}$$

Démonstration

On suppose que f est dérivable sur I et que $(\forall y \in I)(f'(y) \neq 0)$

Montrons que f^{-1} est dérivable sur J

$$\lim_{x \to x_0} \frac{f^{-1}(x) - f^{-1}(x_0)}{x - x_0} = \lim_{x \to x_0} \frac{y - y_0}{f(y) - f(y_0)}$$

$$= \lim_{x \to x_0} \frac{1}{\frac{f(y) - f(y_0)}{y - y_0}} \quad (\text{car } (\forall y \in I)(f'(y) \neq 0))$$

$$= \lim_{x \to y_0} \frac{1}{\frac{f(y) - f(y_0)}{y - y_0}} \quad (\text{car quand } x \text{ tend vers } x_0)$$
on a: $y = f^{-1}(x) \text{ tend ers } f^{-1}(x_0)$

$$= \frac{1}{f'(y_0)} = \frac{1}{f'(f^{-1}(x_0))}$$

Exercice 5

soit f une fonction définie sur

$$I =]-\pi; \pi[par : \begin{cases} f(x) = 2\frac{\cos x - 1}{\sin x}; si...0 < x < \pi \\ f(x) = \frac{x|x+1|}{x-1}; si...-\pi < x \le 0 \end{cases}$$

Professeur	Bahloul Khalid (+212) 622-17-65-52
Chapitre	Dérivation et étude des fonctions (l'essentiel du cours + applications)
Niveaux	Bac français / 1 ^{ère} et 2 ^{ème} Bac International SM

1)monter que f est dérivable en $x_0=0$ et donner l'équation de la tangente a la courbe de f en $x_0=0$

2)a)étudier la dérivabilité de f en $x_0 = -1$

b)donner les équations des demies tangentes à a la courbe de f en en $x_0 = -1$

$$\lim_{x\to 0}\frac{\sin x}{x}=1 \qquad \qquad \lim_{x\to 0}\frac{\cos x-1}{x}=0 \qquad \qquad \lim_{x\to 0}\frac{1-\cos x}{x^2}=\frac{1}{2}$$

Solution : 1) étude de la dérivabilité de f à droite

en
$$x_0 = 0$$

$$\lim_{x \to 0^{+}} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0^{+}} 2 \frac{\cos x - 1}{x \sin x} = \lim_{x \to 0^{+}} -2 \frac{1 - \cos x}{x^{2}} \times \frac{1}{\frac{\sin x}{x}}$$

$$\lim_{x \to 0^+} \frac{f(x) - f(0)}{x - 0} = -2 \times \frac{1}{2} \times 1 = -1 = f'_d(0)$$

Donc f est dérivable à droite en $x_0 = 0$ et $f'_d(0) = -1$

$$\lim_{x \to 0^{-}} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0^{-}} \frac{|x + 1|}{x - 1} = \lim_{x \to 0^{-}} \frac{x + 1}{x - 1} = -1 = f'_{g}(0)$$

Donc f est dérivable à gauche en $x_0 = 0$ et

$$f'_{\sigma}(0) = -1$$

Et puisque : $f'_{\mathbf{d}}(0) = f'_{\mathbf{g}}(0)$

Donc f est dérivable à en $x_0 = 0$ et f'(0) = -1Interprétation géométrique du résultat :

2)
$$\lim_{x \to -1^+} \frac{f(x) - f(-1)}{x+1} = \lim_{x \to -1^+} \frac{x}{x-1} = \frac{1}{2} = f'_d(-1)$$

Donc f est dérivable à droite en $x_0 = -1$ et $f'_d(-1) = \frac{1}{2}$

$$\lim_{x \to -1^{-}} \frac{f(x) - f(-1)}{x + 1} = \lim_{x \to -1^{+}} \frac{-x}{x - 1} = -\frac{1}{2} = f'_{g}(-1)$$

Donc f est dérivable à gauche en $x_0 = -1$ et

$$f'_{g}(-1) = -\frac{1}{2}$$
 mais on a : $f'_{d}(-1) \neq f'_{g}(-1)$

l'équation de la demie tangente à gauche a la courbe de f en en $x_0 = -1$ est :

$$y = f(-1) + f'_{g}(-1)(x+1)$$
 avec $x \le -1$

$$y = 0 - \frac{1}{2}(x+1) \Leftrightarrow (T_g)$$
: $y = -\frac{1}{2}x - \frac{1}{2}$ avec $x \le -1$

La courbe de f admet une tangent en O(0, 0).de

coefficient directeur
$$f'(0) = -1$$

l'équation de la tangente a la courbe de f en

$$x_0 = 0$$
 est: $y = f(x_0) + f'(x_0)(x - x_0)$

$$y = f(0) + f'(0)(x-0)$$

$$y=0-1(x-0) \Leftrightarrow (T): y=-x$$

Donc f n'est pas dérivable en $x_0 = -1$

Interprétation géométrique du résultat :

La courbe admet un point anguleux en A(-1, 0). b) l'équation de la demie tangente à droite a la courbe de f en en $x_0 = -1$ est :

$$y = f(-1) + f'_d(-1)(x+1)$$
 avec $x \ge -1$

$$y = 0 + \frac{1}{2}(x+1) \Leftrightarrow (T_d): y = \frac{1}{2}x + \frac{1}{2}$$
 avec $x \ge -1$