Professeur	Bahloul Khalid (+212) 622-17-65-52
Chapitre	Circuit RC (l'essentiel du cours + applications)
Niveaux	Bac français / 1 ^{ère} et 2 ^{ème} Bac International SM

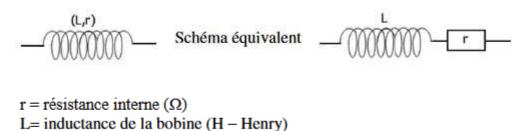
Dipôle RL

Association série d'un conducteur ohmique de résistance R et d'une bobine d'inductance L et de résistance interne r

Bobine

Une bobine est un dipôle passif, elle est formée d'un enroulement cylindrique, à spires jointives, d'un fil électrique recouvert par un isolant

Symbole



Tension aux bornes

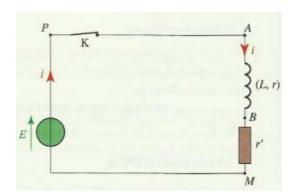
$$U_L = \ r.\,i + \ L.\frac{di}{dt}$$

r = résistance interne (Ω)
L= inductance de la bobine (H – Henry)
i= intensité du courant (A)
U_L=tension aux bornes de la bobine (V)

Une bobine permet de retarder l'établissement ou la rupture du courant

Professeur	Bahloul Khalid (+212) 622-17-65-52
Chapitre	Circuit RC (l'essentiel du cours + applications)
Niveaux	Bac français / 1 ^{ère} et 2 ^{ème} Bac International SM

Etude théorique



À l'instant t = 0 (fermeture du circuit), l'intensité i du courant dans le circuit est nulle.

Pour t > 0, $u_{AM} = E$ et la loi d'additivité des tensions donne :

$$E=u_{AB}+u_{BM}=r\cdot i+L\cdot \frac{\mathrm{d}i}{\mathrm{d}t}+r'\cdot i.$$

Posons R = r + r', résistance du dipôle (R, L).

Nous avons alors : $E = L \cdot \frac{di}{dt} + R \cdot i$; soit :

$$\frac{E}{R} = \frac{L}{R} \cdot \frac{\mathrm{d}i}{\mathrm{d}t} + i$$

Avec $\tau = \frac{L}{R}$ et $I_p = \frac{E}{R}$, l'intensité en régime permanent, nous obtenons :

$$I_{\rm P} = \tau \cdot \frac{\mathrm{d}i}{\mathrm{d}t} + i$$

On cherche une solution de la forme

$$i = I_{\rm p} \cdot (1 - {\rm e}^{-\frac{t}{\tau}}).$$

Lorsque t tend vers une valeur infinie, l'exponentielle $e^{-\frac{t}{\tau}}$ tend vers zéro et i tend vers I_p .

Lorsque le régime permanent est atteint, la bobine se comporte alors comme un conducteur ohmique dont la résistance est égale à celle de la bobine.

Le courant du régime permanant est I_p

Professeur	Bahloul Khalid (+212) 622-17-65-52
Chapitre	Circuit RC (l'essentiel du cours + applications)
Niveaux	Bac français / 1ère et 2ème Bac International SM

Energie emmagasinée

L'énergie magnétique E_m emmagasinée dans une bobine d'inductance L, parcourue par un courant d'intensité i, est égale à :

$$E_{\rm m}=\frac{1}{2}\cdot L\cdot i^2$$

avec E_m en joule (J), L en henry (H) et I en ampère (A).

Influence de de τ

$$\tau_1 > \tau_2$$
 $-\frac{t}{\tau_1} > -\frac{t}{\tau_2}$ $1-e^{-t/\tau_1} < 1-e^{-t/\tau_2}$ $i_1 < i_2$

Plus τ grande plus l'établissement et la coupure du courant permanant est retardée

Application

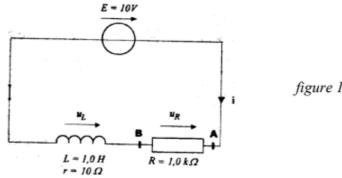
L'objectif de cette étude est de retrouver expérimentalement la capacité d'un condensateur et l'inductance d'une bobine pour les comparer à celles données par le fabricant.

Le matériel disponible pour l'ensemble de cet exercice est le suivant :

- \Box Une bobine d'inductance dont les indications du fabricant sont L=1,0H et r=10 Ω
- \Box Un condensateur dont l'indication du fabricant est $C = 10 \ \mu F$
- □ Un générateur de tension constante E = 10 V
- □ Un conducteur ohmique de résistance $R=1,0 \text{ k}\Omega$
- Un interrupteur simple et un commutateur bipolaire
- Des fils de connexion
- Un système d'acquisition informatisé

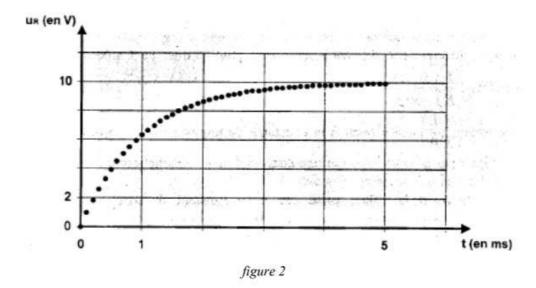
1. Étude expérimentale d'un circuit RL

Le schéma du montage réalisé est représenté sur la figure 1 (le système d'acquisition est connecté mais non représenté):

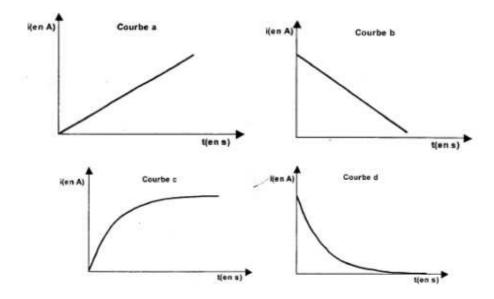


Une fois le paramétrage du système d'acquisition effectué, on ferme l'interrupteur à l'instant de date $t_0 = 0$ s et on enregistre l'évolution de la tension aux bornes du conducteur ohmique de résistance R en fonction du temps. On obtient l'enregistrement représenté sur la figure 2.

Professeur	Bahloul Khalid (+212) 622-17-65-52
Chapitre	Circuit RC (l'essentiel du cours + applications)
Niveaux	Bac français / 1 ^{ère} et 2 ^{ème} Bac International SM



- 1.1 L'adaptateur du système d'acquisition s'utilise comme un voltmètre. Il possède deux bornes : COM et V. Préciser à quels points du circuit il faut relier ces bornes pour obtenir la courbe de la figure 2.
- 1.2 On donne différentes courbes susceptibles de représenter l'intensité du courant en fonction du temps. Choisir celle qui correspond à l'évolution de l'intensité du courant en fonction du temps dans le circuit de la figure 1, après la fermeture de l'interrupteur. Justifier à partir de la courbe expérimentale donnée sur la figure 2.



Professeur	Bahloul Khalid (+212) 622-17-65-52
Chapitre	Circuit RC (l'essentiel du cours + applications)
Niveaux	Bac français / 1ère et 2ème Bac International SM

1.3 Quelle est l'influence de la bobine sur l'établissement du courant lors de la fermeture du circuit ?

2. Modélisation et équation différentielle

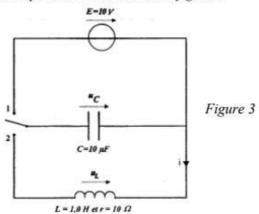
2.1 Si l'on considère que la résistance r de la bobine est négligeable devant R, montrer que l'équation différentielle de ce circuit, interrupteur fermé, peut s'écrire sous la forme :

$$E = u_{R}(t) + \left(\frac{L}{R}\right) \frac{du_{R}(t)}{dt}$$

- **2.2** Le terme $\left(\frac{L}{R}\right)$ correspond à la constante de temps τ de ce circuit (dans lequel on a négligé r par rapport à R). Par une analyse dimensionnelle montrer que cette constante a la dimension d'un temps (ou durée).
- **2.3** On note $u_R(\tau)$ la valeur prise par u_R à l'instant de date $t = \tau$. Sachant que $u_R(\tau) = 0.63(u_R)_{max}$, avec $(u_R)_{max}$, valeur maximale atteinte par la tension u_R , déterminer à partir du graphe de la figure 2 la valeur de la constante de temps τ de ce circuit.
- 2.4 En déduire la valeur de L et la comparer avec l'indication du fabricant.

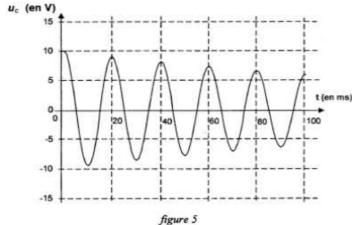
3. Étude du circuit oscillant

On réalise ensuite le montage correspondant au schéma de la figure 3.



On bascule le commutateur en position 1 pour charger le condensateur puis on le bascule en position 2. Avec le même système d'acquisition et de traitement qu'au 1, en adaptant le paramétrage, on enregistre la tension $u_c(t)$ dont le graphe est représenté sur la figure 5.

L'enregistrement débute à l'instant de date $t_o = 0$ s qui correspond au basculement du commutateur en position 2.



Professeur	Bahloul Khalid (+212) 622-17-65-52
Chapitre	Circuit RC (l'essentiel du cours + applications)
Niveaux	Bac français / 1 ^{ère} et 2 ^{ème} Bac International SM

- 3.1 Comment peut-on expliquer la diminution d'amplitude des oscillations au cours du temps ?
- 3.2 Déterminer la valeur de la pseudo-période du signal.
- 3.3 Ici on peut considérer que la période propre et la pseudo-période ont la même expression. En déduire la valeur de la capacité C du condensateur et comparer avec l'indication du fabricant. On donne $\pi^2 \approx 10$

Correction

1. Étude expérimentale d'un circuit RL

- 1.1. La courbe représentative de la tension montre que la tension est positive. Il faut mesurer u_{AB}, pour cela on relie la borne « V » au point A et la borne « COM » au point B.
- **1.2.** D'après la loi d'Ohm: $u_{AB} = u_R = R.i$. Donc $i = \frac{u_R}{R}$

L'intensité du courant est proportionnelle à la tension u_R . La courbe i = f(t) a donc la même allure que $u_R = f(t)$: il s'agit donc de la courbe c.

1.3. Toute bobine s'oppose aux variations de l'intensité du courant qui la traverse. Ici elle retarde l'établissement du courant qui ne passe pas instantanément de 0 à sa valeur maximale.

2. Modélisation et équation différentielle

2.1. D'après la loi d'additivité des tensions dans le circuit : $E = u_R(t) + u_L(t)$ (1)

La tension aux bornes de la bobine de résistance interne négligeable a pour expression : $u_L(t) = L \cdot \frac{di}{dt}$

or
$$i = \frac{u_R(t)}{R}$$
 d'où $u_L(t) = \left(\frac{L}{R}\right) \frac{du_R(t)}{dt}$

En remplaçant dans l'équation (1), on trouve : $E = u_R(t) + \left(\frac{L}{R}\right) \frac{du_R(t)}{dt}$

2.2. Analyse dimensionnelle:

La loi d'ohm permet décrire : $[U] = [R] \times [I]$

La tension aux bornes d'une bobine permet d'écrire : $[U] = [L] \times [I] / [T] = [L] \times [I] \times [T]^{-1}$

On en déduit $[U] = [R] \times [I] = [L] \times [I] \times [T]^{-1}$ soit [L]/[R] = [T]

Le rapport L/R a donc les dimensions d'un temps.

2.3.
$$(u_R)_{max} = 10 \text{ V}.$$

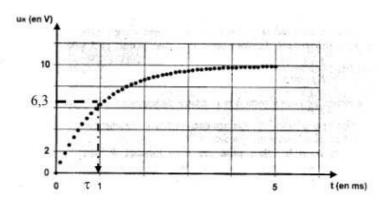
 $u_R(\tau) = 0.63 \times 10 = 6.3 \text{ V}$

Par lecture graphique, on trouve $\tau = 1.0$ ms.

2.4. On a
$$\tau = \frac{L}{R}$$
, soit L = τ .R

$$L = 1,0.10^{-3} \times 1,0.10^{3} = 1,0 H$$

valeur compatible avec celle du fabricant.



Professeur	Bahloul Khalid (+212) 622-17-65-52
Chapitre	Circuit RC (l'essentiel du cours + applications)
Niveaux	Bac français / 1 ^{ère} et 2 ^{ème} Bac International SM

3. Étude du circuit oscillant

- 3.1. La diminution d'amplitude est due à la résistance interne de la bobine. Il y a dissipation d'énergie sous forme de chaleur en raison de l'effet Joule) u_{-} (en V)
- 3.2. La pseudo-période vaut T = 20 ms.
- **3.3.** La pseudo-période ayant même valeur que la période propre, on a :

$$T = T_0 = 2\pi \sqrt{L.C}$$

$$T^2 = 4\pi^2 .L.C$$

$$C = \frac{T^2}{4\pi^2 .L}$$

$$C = \frac{(20.10^{-3})^2}{4 \times 10 \times 1.0} = \frac{400.10^{-6}}{40} = 10.10^{-6} \text{ F}$$

C = 10 µF Valeur égale à celle du fabricant.

