Professeur	Bahloul Khalid (+212) 622-17-65-52
Chapitre	État d'équilibre d'un système chimique (l'essentiel du cours + applications)
Niveaux	Bac français / 1 ^{ère} et 2 ^{ème} Bac International SM

Quotient de réaction

Un système chimique réversible est un système qui peut évoluer dans le sens de création des produits et dans le sens de création des réactifs.

$$\begin{split} \alpha \mathbf{A}_{(\mathrm{aq})} + \beta \mathbf{B}_{(\mathrm{aq})} & \rightleftharpoons \gamma \mathbf{C}_{(\mathrm{aq})} + \delta \mathbf{D}_{(\mathrm{aq})} \\ Q_r & = \frac{[\mathbf{C}]^{\gamma} \cdot [\mathbf{D}]^{\delta}}{[\mathbf{A}]^{\alpha} \cdot [\mathbf{B}]^{\beta}} \end{split}$$

Quotient de réaction à un instant donné

 Q_r est une grandeur sans dimension. [A], [B], [C] et [D] les concentrations molaires des espèces chimiques exprimées en mol.L⁻¹

Remarque importante: Par convention, dans l'expression de Qr il ne figure que les concentrations molaires des espèces chimiques aqueuses, l'eau et les solides sont représentés par 1 dans l'expression de Q_r

Constante d'équilibre

L'équilibre d'un système chimique est l'état où une réaction réversible atteint une stabilité macroscopique, avec des vitesses de réaction directe et inverse égales, conduisant à des concentrations constantes de réactifs et de produits.

Cette état d'équilibre est caractérisé par une constante K appelé constante d'équilibre qui ne dépond que de la température et qui correspond au quotient de la réaction à l'état d'équilibre

$$Q_{r,\acute{e}q} = K$$

Remarque importante : On considère qu'une transformation est totale lorsque la constante d'équilibre associée à l'équation a une valeur élevée. Les chimistes considèrent les transformations totales ceux dont K est supérieure à 1.10⁴

Détermination de K

$$AH_{(aq)} + H_2O_{(l)} \rightleftharpoons H_3O_{(aq)}^+ + A_{(aq)}^-$$

	$AH_{(aq)}$ +	$\mathrm{H_2O}_{(\mathrm{l})}$	\rightleftharpoons	$\mathrm{H_{3}O_{(aq)}^{+}}$	$+$ $A_{(aq)}^-$
État initial	CV	Excès		0	0
État en cours	CV - x	Excès		x	x
État final	$CV - x_f$	Excès		x_f	x_f

$$K = \frac{[A^{-}].[H_3O^{+}]}{[AH]}$$

K en fonction de pH et C

$$[A^{-}] = [H_3O^{+}] = \frac{x_f}{V} = 10^{-pH}$$
 $[AH] = \frac{CV - x_f}{V} = C - 10^{-pH}$

$$K = \frac{[{\rm A}^-].[{\rm H_3O^+}]}{[{\rm AH}]} = \frac{[{\rm H_3O^+}]^2}{[{\rm AH}]} = \frac{\left(10^{-{
m pH}}\right)^2}{C - 10^{-{
m pH}}}$$

$$= \frac{10^{-2 \text{pH}}}{C - 10^{-\text{pH}}} \qquad K = \frac{10^{-2 \text{pH}}}{C - 10^{-\text{pH}}}$$

K en fonction de τ et C

$$\tau = \frac{x_f}{x_m} \hspace{1cm} \tau = \frac{x_f}{CV} \Longleftrightarrow x_f = \tau CV$$

$$[A^{-}] = [H_3O^{+}] = \frac{x_f}{V}$$
 $[AH] = \frac{CV - x_f}{V} = C - \tau \cdot C = C(1 - \tau)$

$$K = \frac{[A^-].[H_3O^+]}{[AH]} = \frac{(\tau.C)^2}{C(1-\tau)} = \frac{C\tau^2}{1-\tau}$$

$$K = \frac{C\tau^2}{1-\tau}$$

Application 1

- 1. Dans un équilibre chimique,
- a. les réactifs et les produits sont figés
- b. les réactifs et les produits se transforment les uns en les autres en permanence

C'est la réponse b qui est juste expliquez pourquoi en utilisant les vitesses de réaction

Application 2

Un sel solide se dissocie dans l'eau selon la réaction

$$A_2B_{3(s)} \stackrel{\leftarrow}{\rightarrow} 2A_{(aq)}^{3-} + 3B_{(aq)}^{2+}$$

La constante de cet équilibre vaut $K_S=3,5\cdot 10^{-8}$

La masse molaire du sel vaut

$$M=126~{\rm g\cdot mol^{-1}}$$

On introduit du sel dans un filtre d'eau jusqu'à la saturation et on note "m" la masse de sel correspondante

- a. Pourquoi l'état atteint est-il un état d'équilibre?
- **b.** Construire un tableau d'avancement et en déduire les concentrations $[A^{3-}]$ et $[B^{2+}]$ en fonction de m.
- c. En déduire la valeur de m à la saturation.

Correction

- a. Dans l'état de solution saturée, il y a coexistence du réactif et des deux produits, ce qui correspond à un équilibre.
- **b.** On construit le TA en posant n=m/M

Comme dans l'état final d'équilibre, il n'y a qu'un cristal de sel solide, $x_f \simeq n$

On en déduit (avec $V=1,0 \, \mathrm{L}$)

$$[A^{3-}]=\frac{2n}{V}=\frac{2m}{MV}$$

$$[B^{2+}]=\frac{3n}{V}=\frac{3m}{MV}$$

c. À l'équilibre, le quotient de réaction est égal à la constante de réaction donc

$$\left(\frac{[A^{3-}]}{c^0}\right)^2 \cdot \left(\frac{[B^{2+}]}{c^0}\right)^3 = K_S$$

$$soit \frac{108m^5}{(MVc^0)^5} = K_S$$

donc
$$m = MVc^0 \left(\frac{K_S}{108}\right)^{1/5} = 1,59 \text{ g}$$

Application 3

Un équilibre chimique a pour équation

$$A_{(aq)} + B_{(aq)} \stackrel{\leftarrow}{\rightarrow} C_{(aq)}$$

Sa constante d'équilibre vaut K(T) où T désigne la température.

On introduit dans un litre d'eau des quantités de matière égales de A et de B.

- a. Quel est le quotient de réaction à l'état initial? Pourquoi C se forme-t-il? On laisse la réaction évoluer jusqu'à l'équilibre chimique.
- b. À partir de l'état d'équilibre de la question a, on introduit rapidement une petite quantité de A dans la solution. Dans quel sens la réaction évolue-t-elle?
- c. À partir de l'état d'équilibre de la question a, on introduit rapidement une petite quantité de C dans la solution. Dans quel sens la réaction évolue-t-elle?
- d. On suppose que K est une fonction croissante de la température T. À partir de l'état d'équilibre de la question a, doit-on chauffer ou refroidir le mélange pour favoriser la formation de l'espèce C?

Correction

a. À l'instant initial, $[C]_i = 0$ donc

$$Q_{r,i} = \frac{[C]_i/c^0}{([A]_i/c^0)([B]_i/c^0)} = 0$$

La réaction évolue dans le sens tel que Q_r s'approche de K(T).

Comme ici, $Q_{r,i} < K(T)$, la réaction évolue dans le sens de croissance de Q_r , donc dans le sens direct permettant d'augmenter [C] au numérateur et de diminuer [A] et [B] au dénominateur. Il y a donc formation de C.

b. À l'équilibre,
$$Q_r = K(T)$$
.

En ajoutant rapidement une petite quantité de A, on augmente la valeur de [A] qui est au dénominateur, donc on diminue Q_r . Q_r se retrouve ainsi inférieur à K(T), donc la réaction évolue dans le sens direct, pour faire réaugmenter Q_r .

c. À l'équilibre,
$$Q_r=K(T)$$
.

En ajoutant rapidement une petite quantité de C, on augmente la valeur de [C] qui est au numérateur, donc on augmente Q_r . Q_r se retrouve ainsi supérieur à K(T), donc la réaction évolue dans le sens rétrograde pour faire rediminuer Q_r .

d. On veut favoriser la formation de C, donc forcer la réaction à évoluer dans le sens direct.

À partir de l'état d'équilibre, où $Q_r = K(T)$, on veut donc changer la température de T à T', de telle sorte que $Q_r < K(T')$. 4

On doit donc provoquer l'augmentation de la constante d'équilibre. Or K est une fonction croissante de la température. On doit donc augmenter la température (T' > T).