Professeur	Bahloul Khalid (+212) 622-17-65-52
Chapitre	Transformations chimique dans les deux sens (l'essentiel du cours + applications)
Niveaux	Bac français / 1 ^{ère} et 2 ^{ème} Bac International SM

Les réactions acido-basiques (rappels):

Acide : Selon Bronsted, l'acide est toute espèce chimique capable de libérer un proton H⁺pendant une transformation chimique.

Base : Selon Bronsted, la base est toute espèce chimique capable de capter un proton H⁺ pendant une transformation chimique.

L'acide AH et la base A- forment un couple acide/base noté AH/A-, on dit que A- est la base conjuguée de l'acide AH.

De même la base B et l'acide BH+ forment le couple acide/base noté BH+/B, on dit que BH+ est l'acide conjugué de la base B.

$$AH \rightleftharpoons A^{-} + H^{+}$$
 $BH^{+} \rightleftharpoons B + H^{+}$
 $AH + B \rightleftharpoons A^{-} + BH^{+}$

Certaines espèces chimiques jouent le rôle d'une base et d'un acide à la fois, par exemple H2O et NH3, on les appelle des ampholytes.

Le pH (potentiel Hydrogène) est la mesure de l'activité chimique des protons H+, qui sont présents souvent dans les solutions aqueuses sous forme des ions oxonium H3O+. En effet, on peut calculer cette activité en utilisant la relation suivante :

$$pH = -\log[H_3O^+]$$
 $[H_3O^+] = 10^{-pH}$

L'avancement d'une transformation limitée

Avancement final et maximal

Avancement maximal x_{max} est l'avancement qui correspond à la disparition du réactif limitant.

- . Avancement final est la valeur d'avancement qui correspond à l'état final d'une réaction limitée.
- . Une transformation limitée est caractérisée par : $x_f < x_{\text{max}}$.

Le taux d'avancement final

$$\tau = \frac{x_f}{x_{\text{max}}}$$

- . τ est toujours inférieure ou égale à 1.
- . Si $\tau = 1$ alors la transformation est totale $(x_f = x_{\text{max}})$.
- . Si $\tau < 1$ alors la transformation est limitée ($x_f < x_{\rm max}$).

au en fonction pH

$$AH_{(aq)} + H_2O_{(l)} \rightleftharpoons H_3O_{(aq)}^+ + A_{(aq)}^-$$

Équation chimique		$\mathrm{AH}_{\mathrm{(aq)}}$	+	$\mathrm{H_2O}_{(\mathrm{l})}$	\rightleftharpoons	$\mathrm{H_3O}^+_{\mathrm{(aq)}}$	+	$A_{(aq)}^-$
État	Avancement	Quantité de matière						
État initial	0	CV		Excès		0		0
État en cours	x	CV - x		Excès		x		x
État final	x_f	$CV - x_f$		Excès		x_f		x_f

Calculons le taux d'avancement final : On sait que
$$\tau = \frac{x_f}{x_{\text{max}}}$$
,

. Supposons que la transformation est totale, c'est-à-dire $x_f = x_{\rm max}$ Donc $CV - x_f = 0 \iff CV - x_{\text{max}} = 0 \iff x_{\text{max}} = CV$.

D'où finalement, $x_{\text{max}} = CV$.

On a d'après le tableau

$$[\mathrm{H}_3\mathrm{O}^+] = \frac{x_f}{V} \Longleftrightarrow x_f = [\mathrm{H}_3\mathrm{O}^+].V$$

 $x_f = 10^{-\mathrm{pH}}.V$

Par suite : $x_{\text{max}} = CV$ et $x_f = 10^{-\text{pH}}.V$

Finalement:

$$\tau = \frac{10^{-\mathrm{pH}}}{C}.$$

au en fonction σ :

On pose $\lambda_{A^-} = \lambda_1$ et $\lambda_{H_3O^+} = \lambda_2$.

$$\sigma_f = \sum_i \lambda_i [X_i]$$

$$= \lambda_1 [A^-] + \lambda_2 [H_3 O^+]$$

$$= [H_3 O^+] (\lambda_1 + \lambda_2)$$

$$= \frac{x_f}{V} (\lambda_1 + \lambda_2)$$

$$x_f = \frac{\sigma_f V}{\lambda_1 + \lambda_2}$$

$$\tau = \frac{\sigma_f}{C(\lambda_1 + \lambda_2)}$$

Remarque : Attention pour les unités, ici la concentration doit être exprimé en mol.m⁻³, $10^3 \text{ mol/m}^3 = 1 \text{ mol/L}$

Application 1

On introduit dans un bécher un volume V=500cm3 d'eau distillée et on lui ajoute un volume V=1cm3 d'une solution

d'acide éthanoïque pure.

On mesure de le pH du mélange à l'aide d'un pH mètre et on obtient : pH=3,1. La réaction de l'acide éthanoïque avec l'eau s'écrit:

$$CH_3COOH + H_2O \rightleftharpoons CH_3COO^- + H_3O^+$$

La densité de l'acide éthanoïque : d=1,05

$$\rho_{eau} = 1g/cm^3$$

La masse molaire de la molécule d'acide éthanoïque $M_{(CH_3COOH)} = 60 \, g \, / \, mol$

- 1) Déterminer la quantité de matière initiale de l'acide éthanoïque.
- 2) Dresser le tableau d'avancement de la réaction puis déterminer la valeur de l'avancement maximal.
- 4) Déterminer la valeur de l'avancement final. Quelle est votre conclusion.
- 5) Calculer le taux d'avancement final de la réaction

Correction

1) La quantité de matière initiale de l'acide éthanoïque.

$$n_i = \frac{m_i}{M} = \frac{\rho_a.V}{M} = \frac{d.\rho_{eau}.V_a}{M} = \frac{1,05 \times 1g/cm^3 \times 1cm^3}{60} = 1,75 \times 10^{-2} mol$$

2) Tableau d'avancement de la réaction :

Equation de la r	éaction	$CH_3COOH + H_2O \longrightarrow CH_3COO^- + H_3O^+$ (ω_i) (ω_i)				
Les états	avancement	n(CH ₃ COOH)	$n(H_2O)$	$n(CH_3COO^-)$	$n(H_3O^*)$	
état initial	0	<i>72</i> _i	excès	0	0	
état de transformation	x	$n_i - x$	excés	х	х	
état final	- x _f	$n_i - x_f$	excés	x_f	x _f	

Or l'eau est utilisée en excès, CH₃COOH est le réactif limitant. $n_i - x_{max} = 0$ donc : $x_{max} = n_i = 1,75.10^{-2} \, mol$

$$n_i - x_{\text{max}} = 0$$
 donc: $x_{\text{max}} = n_i = 1,75.10^{-2} \, \text{mod}$

3) La stabilité du pH du mélange à pH=3,1 indique que la réaction a atteint son état final.

On a:
$$\begin{cases} \begin{bmatrix} H_3O^+ \end{bmatrix}_f = 10^{-pH} \\ [H_3O^+]_f = \frac{x_f}{V_S} \end{cases} \qquad \text{done:} \qquad \frac{x_f}{V_S} = 10^{-pH} \\ \text{d'où:} \quad x_f = V_S.10^{-pH} = (500+1).10^{-3}.10^{-3.1} \approx 4..10^{-4} mol \qquad \text{done:} \qquad \frac{x_f}{V_S} = 4..10^{-4} mol \end{cases}$$

On constate que l'avancement final est inférieur à l'avancement maximal donc l'acide éthanoïque n'a pas complètement disparait à la fin de la réaction.

La quantité de matière de l'acide éthanoïque restante à la fin de la réaction est :

$$n(CH_3COOH) = n_i - n_f = 1.75 \times 10^{-2} - 4 \times 10^{-4} = 1.71 \times 10^{-2} mol$$

Par conséquence la réaction étudiée n'est pas totale, tous les réactifs et les produits sont présents à l'état final malgré que la réaction a cessé d'évoluer, donc la réaction est limitée.

Application 2

On considère une solution S d'acide benzoïque. L'équation de sa réaction avec l'eau s'écrit:

$$C_6H_5COOH(aq) + H_2O(I) = C_6H_5COO^{-}(aq) + H_3O^{+}(aq)$$

La mesure de sa conductivité a donné la valeur suivante: $\sigma = 36.1mS/m$

- 1) Dresser le remplissage du tableau d'avancement suivant:
- 2) Donner l'expression de la conductivité du mélange réactionnel en fonction de $\lambda_{H_3O^+}$, $\lambda_{C_6H_5COO^-}$, du volume V de la solution et l'avancement final x_f .
- 3) Déterminer la valeur de l'avancement final de la dissociation de l'acide benzoïque dans l'eau $\lambda_{H_3O^+} = 35mS.m^2/mol \text{ et } \lambda_{C_6H_5COO^-} = 3,23mS.m^2/mol$

Correction

$C_6H_5COOH + H_2O \longrightarrow C_6H_5COO^- + H_3O^+$						
n(CH ₃ COOH)	$n(H_2O)$	n(CH ₃ COO ⁻)	$n(H_3O^*)$			
n.	excès	0	^			
$n_0 - x$	excés	x	x			
$\mathbf{n}_{o} - x_{f}$	excès	x_f	x_f			

2) Or la conductivité se mesure lorsque l'état final est atteint :

$$\sigma = \lambda_{(C,H,C00^{-})} \cdot [C_6 H_5 COO^{-}] + \lambda_{(H,0^{+})} \cdot [H_3 O^{+}]_{f}$$

D'après le tableau d'avancement on a:

$$n(H_3O^+) = n(C_6H_5COO^-) = x_f$$

$$[H_3O^+] = [C_6H_5COO^-] = \frac{x_f}{V} \qquad \Longrightarrow \qquad \sigma = \left(\lambda_{(C,H_1OOO^-)} + \lambda_{(H,O^+)}\right) \cdot \frac{x_f}{V}$$

3) l'avancement final de la dissociation de l'acide benzoïque dans l'eau:

$$x_f = \frac{\sigma \cdot V}{A_{(C,H_c00^-)} + A_{(H_c0^+)}}$$

$$x_f = \frac{36,1.10^{-3} S m^{-1}.50.10^{-6} m^3}{(35+3,23).10^{-3} S.m^2 mol^{-1}} = 4,72.10^{-5} mol$$

4)
$$\left[(C_6 H_5 COO^{-}) \right] = \left[H_3 O^{+} \right] = \frac{x_f}{V} = \frac{4.72 \cdot 10^{-5} \, mol}{0.05 L} = 0.94 \cdot 10^{-3} \, \text{mol/L}.$$

5)
$$pH = -log[H_3O^+] = -log(0.94.10^{-3}) = 3$$

6)
$$\tau = \frac{x_f}{x_{\text{max}}} = \frac{x_f}{CV} = \frac{4,72 \times 10^{-3}}{1,18 \times 10^{-2} \times 50 \times 10^{-3}} = 0,08 = 8\%$$
 $\tau < 1 \implies \text{la réaction est limitée}$

Cela signifie que seulement 8 % des molécules d'acide benzoïque ont été transformées pour donner leur base conjuguée et H_3O^+ .