Professeur	Bahloul Khalid (+212) 622-17-65-52
Chapitre	Fonction exponentielle (l'essentiel du cours + applications)
Niveaux	Bac français / 1 ^{ère} et 2 ^{ème} Bac International SM

Fonction exponentielle

I) LA FONCTION EXPONENTIELLE NEPERIENNE

1) Définition et propriétés

La fonction ln est continue strictement croissante

sur]0, +
$$\infty$$
[et $ln(]0, +\infty[) = \lim_{x\to 0^+} \ln x$; $\lim_{x\to +\infty} lnx$ [= \mathbb{R}

Propriété et définition :

La fonction ln admet une fonction réciproque définie de] – ∞ , + ∞ [vers]0, + ∞ [appelée fonction Exponentielle népérienne notée : exp

Propriétés:

- 1) $(\forall x \in \mathbb{R})(ln(exp(x)) = x)$
- 2) $(\forall x \in \mathbb{R}+*)(exp(ln(x)) = x$
- 3) $(\forall x \in \mathbb{R} + *)(\forall y \in \mathbb{R})(ln(x) = y \iff x = exp(y))$
- 4) exp(0) = 1; exp(1) = e

Propriété : (monotonie) :La fonction exp est continue strictement croissante sur \mathbb{R} .

Résultat :

- 1) $(\forall x \in \mathbb{R})(\forall y \in \mathbb{R})(exp(x) = exp(y) \iff x = y)$
- 2) $(\forall x \in \mathbb{R})(\forall y \in \mathbb{R})(exp(x) \le exp(y) \iff x \le y)$

Exemple: Résoudre les équations et inéquations suivantes dans \mathbb{R} :

1)
$$\exp\left(\frac{x+5}{2x+3}\right) = \exp\left(\frac{1}{x-1}\right)$$
 2) $\exp\left(2x+1\right) \le \exp\left(\frac{6}{x}\right)$

Professeur	Bahloul Khalid (+212) 622-17-65-52
Chapitre	Fonction exponentielle (l'essentiel du cours + applications)
Niveaux	Bac français / 1 ^{ère} et 2 ^{ème} Bac International SM

Solution :1) ln(x-2)=0

a)cette équation est définie ssi : $2x+3\neq 0$ et

$$x-1 \neq 0 \text{ donc}: x \neq -\frac{3}{2} \text{ et } x \neq 1 \text{ donc}: D_{\mathbb{R}} = \mathbb{R} - \left\{-\frac{3}{2}; 1\right\}$$

b) Résoudre l'équation :

$$\exp\left(\frac{x+5}{2x+3}\right) = \exp\left(\frac{1}{x-1}\right) \Leftrightarrow \frac{x+5}{2x+3} = \frac{1}{x-1}$$

$$(x+5)(x-1) = 2x+3 \Leftrightarrow x^2+2x-8=0$$

$$\Delta = b^2 - 4ac = 2^2 - 4 \times (-8) \times 1 = 4 + 32 = 36 > 0$$

$$x_1 = \frac{-2+6}{2\times 1} = \frac{4}{2} = 2$$
 et $x_1 = \frac{-2-6}{2\times 1} = \frac{-8}{2} = -4$

Donc : $S = \{-4, 2\}$

$$2) \exp(2x+1) \le \exp\left(\frac{6}{x}\right)$$

a)cette inéquation est définie ssi : $x \neq 0$ donc :

2)
$$\exp(2x+1) \le \exp\left(\frac{6}{x}\right) \Leftrightarrow 2x+1 \le \frac{6}{x}$$

$$\Leftrightarrow \frac{2x^2 + x - 6}{x} \le 0$$

x	$-\infty$	-2	0		3/2	$+\infty$
2x + x - 6	,-,	þ	+	4	þ	878
\boldsymbol{x}	-		- þ	+		+
q(x)	+	b .	_	+	Ó	0-0

$$S = \left] -\infty, -2 \right] \cup \left[0, \frac{3}{2} \right]$$

2) l'écriture : e^x

 $\exp(x) = e^x$

Propriété algébrique :

Pour tout x et y dans \mathbb{R} on a :

1)
$$e^{x+y} = e^x \times e^y$$
 2) $e^{-x} = \frac{1}{e^x}$ 3) $e^{x-y} = \frac{e^x}{e^y}$

4)
$$e^{rx} = (e^x)^r \quad (r \in \mathbb{Q})$$
 5) $(e^{\ln x} = x) \quad (\forall x > 0)$

6)
$$\left(\ln\left(e^{x}\right)=x\right)\left(\forall x\in\mathbb{R}\right)$$

6)
$$\left(\ln\left(e^{x}\right) = x\right) \left(\forall x \in \mathbb{R}\right)$$

7) $\left(\forall y \succ 0\right) \left(\forall x \in \mathbb{R}\right) \left(e^{x} = y\right) \Leftrightarrow \left(x = \ln y\right)$
8) $\left(\forall y \succ 0\right) \left(\forall x \in \mathbb{R}\right) \left(e^{x} = e^{y}\right) \Leftrightarrow \left(x = y\right)$
9) $\left(\forall y \succ 0\right) \left(\forall x \in \mathbb{R}\right) \left(e^{x} \ge e^{y}\right) \Leftrightarrow \left(x \ge y\right)$

8)
$$(\forall y \succ 0) (\forall x \in \mathbb{R}) (e^x = e^y) \Leftrightarrow (x = y)$$

9)
$$(\forall y \succ 0) (\forall x \in \mathbb{R}) (e^x \ge e^y) \Leftrightarrow (x \ge y)$$

Exemples: Résoudre les équations et inéquations suivantes dans $\mathbb R$:

1)
$$e^{1-x} \times e^{2x} = e$$
 2) $\frac{e^{2-x}}{e^{1+2x}} = e^{x-1}$

Solution :1) $e^{1-x} \times e^{2x} = e \Leftrightarrow e^{2x+1-x} = e^1$ $\Leftrightarrow e^{x+1} = e^1 \Leftrightarrow x+1=1 \Leftrightarrow x=0 \text{ donc} : S = \{0\}$

2)
$$\frac{e^{2-x}}{e^{1+2x}} = e^{x-1} \iff e^{(2-x)-(1+2x)} = e^{x-1}$$

$$\Leftrightarrow$$
 $(2-x)-(1+2x)=x-1 \Leftrightarrow -4x=-2 \Leftrightarrow x=\frac{1}{2}$

Donc: $S = \left\{ \frac{1}{2} \right\}$

Professeur	Bahloul Khalid (+212) 622-17-65-52
Chapitre	Fonction exponentielle (l'essentiel du cours + applications)
Niveaux	Bac français / 1 ^{ère} et 2 ^{ème} Bac International SM

Propriété : (limites usuelles)

$$1)\lim_{x\to+\infty}e^x=+\infty$$

$$\lim_{x\to -\infty} e^x = 0$$

$$3) \lim_{x \to +\infty} \frac{e^x}{x} = +\infty$$

4)
$$\lim_{x \to +\infty} \frac{e^x}{x^n} = +\infty$$

$$5) \lim_{x \to -\infty} x e^x = 0^-$$

$$6) \lim_{x \to -\infty} x^n e^x = 0$$

7)
$$\lim_{x\to 0} \frac{e^x - 1}{x} = 1$$
 avec: $n \in \mathbb{N}^*$

Exemple : Déterminer les limites suivantes :

1)
$$\lim_{x \to +\infty} \frac{e^x}{x^2 + 3x + 4}$$
 2) $\lim_{x \to -\infty} x^5 e^{-\sqrt{-x}}$

2)
$$\lim_{x \to -\infty} x^5 e^{-\sqrt{-x}}$$

3)
$$\lim_{x\to 0} \frac{e^{\sin x} - 1}{x}$$
 4) $\lim_{x\to 0} \frac{e^{x+1} - e}{x}$

4)
$$\lim_{x\to 0} \frac{e^{x+1}-e}{x}$$

Solution:1)
$$\frac{e^x}{x^2 + 3x + 4} = \frac{e^x}{x^2 \left(1 + \frac{3}{x} + \frac{4}{x^2}\right)} = \frac{e^x}{x^2} \frac{1}{1 + \frac{3}{x} + \frac{4}{x^2}}$$

Et on a :
$$\lim_{x \to +\infty} \frac{e^x}{x^2} = +\infty$$
 et $\lim_{x \to +\infty} 1 + \frac{3}{x} + \frac{4}{x^2} = 1$

Donc:
$$\lim_{x \to +\infty} \frac{e^x}{x^2 + 3x + 4} = +\infty$$

2)
$$\lim_{x \to -\infty} x^5 e^{-\sqrt{-x}}$$
 on pose : $t = \sqrt{-x}$

donc
$$x \to -\infty \Leftrightarrow t \to +\infty$$

$$\lim_{x \to -\infty} x^5 e^{-\sqrt{-x}} = \lim_{t \to +\infty} -t^{10} e^{-t} = \lim_{t \to +\infty} -\frac{t^{10}}{e^t} = 0$$

3) on a:
$$\lim_{x\to 0} \frac{e^{\sin x} - 1}{x} = \lim_{x\to 0} \frac{e^{\sin x} - 1}{\sin x} \times \frac{\sin x}{x} = 1 \times 1 = 1$$

Car:
$$\lim_{x\to 0} \frac{e^{\sin x} - 1}{\sin x} = 1$$
 (on pose: $t = \sin x$) et $\lim_{x\to 0} \frac{\sin x}{x} = 1$

4)On pose :
$$f(x) = e^{x+1}$$
 donc : $f(0) = e^{0+1} = e^1 = e$

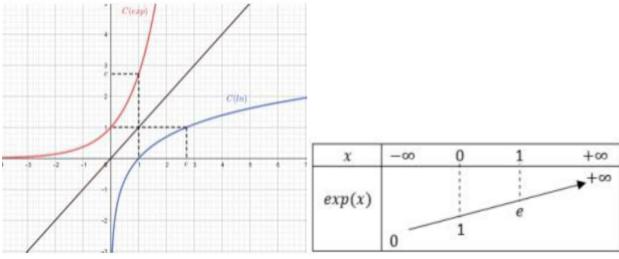
Et:
$$f'(x) = (x+1)' e^{x+1} = 1e^{x+1} = e^{x+1}$$
 et $f'(0) = e$

Donc:
$$\lim_{x \to 0} \frac{e^{x+1} - e}{x} = \lim_{x \to 0} \frac{f(x) - f(0)}{x - 0} = f'(0) = e$$

Professeur	Bahloul Khalid (+212) 622-17-65-52	
Chapitre	Fonction exponentielle (l'essentiel du cours + applications)	
Niveaux	Bac français / 1 ^{ère} et 2 ^{ème} Bac International SM	

3) Représentation de la fonction exp

La fonction exp est strictement monotone sur \mathbb{R} Car l'exp est la fonction réciproque de la fonction ln qui est strictement monotone sur $]0, +\infty[$ Les courbes C_{ln} et C_{exp} sont symétriques par rapport à la première bissectrice (Δ) : y = x



4) Dérivation de la fonction exp

On sait que la fonction exp est la fonction réciproque de la fonction ln qui est dérivable sur

]0, +
$$\infty$$
[.Et on sait que : $(\forall x \in]0, +\infty[) (\ln x)' = \frac{1}{x}$

Donc la fonction exp est dérivable sur

$$\mathbb{R} = ln(]0, +\infty[).$$

Soit $x \in \mathbb{R}$ on a :

$$exp'(x) = (ln^{-1})'(x) = \frac{1}{\ln'(exp(x))} = exp(x)$$

Car:
$$(f^{-1})'(x) = \frac{1}{f'(f^{-1}(x))}$$
 avec $f = ln$ et $ln^{-1} = exp$

Professeur	Bahloul Khalid (+212) 622-17-65-52
Chapitre	Fonction exponentielle (l'essentiel du cours + applications)
Niveaux	Bac français / 1 ^{ère} et 2 ^{ème} Bac International SM

Propriété : La fonction exp est dérivable sur \mathbb{R} et $(\forall x \in \mathbb{R})(exp'(x) = exp(x))$

Corolaire: Si u est une fonction dérivable sur un intervalle I alors la fonction exp(u(x)) est dérivable sur I et $(\forall x \in I)(exp(u(x)))'=u'(x)$ exp(u(x))

Exemple : Déterminer les dérivées des fonctions

1)
$$f(x) = e^{\sqrt{2x+1}}$$
 2) $g(x) = e^{-2x^2} - 3e^{3x+1}$

3)
$$h(x) = e^{\frac{x+1}{-x+3}}$$
 4) $f(x) = (e^x - 4)\sqrt{e^x - 1}$

Solutions: 1)
$$f(x) = e^{\sqrt{2x+1}}$$
 $\left[-\frac{1}{2}; +\infty \right]$ et $f'(x) = \frac{1}{\sqrt{2x+1}} e^{\sqrt{2x+1}}$

la fonction : $u_1: x \to \sqrt{2x+1}$ est dérivable sur

$$\left| \frac{1}{2}; +\infty \right| \text{ et } u_1'(x) = \frac{\left(2x+1\right)'}{2\sqrt{2x+1}} = \frac{1}{\sqrt{2x+1}}$$

$$u_1: x \to -2x^2 \text{ et } u_2: x \to 3x+1 \text{ sont dérivables}$$

$$\text{sur } \mathbb{R} \text{ et on a :}$$

2) $g(x) = e^{-2x^2} - 3e^{3x+1}$ les fonctions:

Donc la fonction
$$f$$
 est dérivable sur
$$u_1'(x) = -4x \text{ et } u_2'(x) = 3$$

Donc la fonction $\,g\,$ est dérivable sur $\,\mathbb{R}\,$

$$| -\infty;3[\text{ et } h'(x) = \frac{4}{(x-3)^2} e^{\frac{x+1}{-x+3}}]$$

$$| -\infty;3[\text{ et } h'(x) = \frac{4}{(x-3)^2} e^{\frac{x+1}{-x+3}}]$$

$$| -\infty;3[\text{ et } h'(x) = \frac{4}{(x-3)^2} e^{\frac{x+1}{-x+3}}]$$

$$| -\infty;3[\text{ et } h'(x) = \frac{4}{(x-4)\sqrt{e^x-1}}]$$

$$| -\infty;3[\text{ et } h'(x) = \frac{4}{(x-4)\sqrt{e^x-1}}]$$

$$| -\infty;3[\text{ et } h'(x) = \frac{4}{(x-4)\sqrt{e^x-1}}]$$

$$| -\infty;3[\text{ et } h'(x) = \frac{4}{(x-4)\sqrt{e^x-1}}]$$

$$| -\infty;3[\text{ et } h'(x) = \frac{4}{(x-4)\sqrt{e^x-1}}]$$

$$| -\infty;3[\text{ et } h'(x) = \frac{4}{(x-4)\sqrt{e^x-1}}]$$

$$| -\infty;3[\text{ et } h'(x) = \frac{4}{(x-4)\sqrt{e^x-1}}]$$

$$| -\infty;3[\text{ et } h'(x) = \frac{4}{(x-4)\sqrt{e^x-1}}]$$

$$| -\infty;3[\text{ et } h'(x) = \frac{4}{(x-4)\sqrt{e^x-1}}]$$

$$| -\infty;3[\text{ et } h'(x) = \frac{4}{(x-4)\sqrt{e^x-1}}]$$

$$| -\infty;3[\text{ et } h'(x) = \frac{4}{(x-4)\sqrt{e^x-1}}]$$

$$| -\infty;3[\text{ et } h'(x) = \frac{4}{(x-4)\sqrt{e^x-1}}]$$

$$| -\infty;3[\text{ et } h'(x) = \frac{4}{(x-4)\sqrt{e^x-1}}]$$

$$| -\infty;3[\text{ et } h'(x) = \frac{4}{(x-4)\sqrt{e^x-1}}]$$

$$| -\infty;3[\text{ et } h'(x) = \frac{4}{(x-4)\sqrt{e^x-1}}]$$

$$| -\infty;3[\text{ et } h'(x) = \frac{4}{(x-4)\sqrt{e^x-1}}]$$

$$| -\infty;3[\text{ et } h'(x) = \frac{4}{(x-4)\sqrt{e^x-1}}]$$

$$| -\infty;3[\text{ et } h'(x) = \frac{4}{(x-4)\sqrt{e^x-1}}]$$

$$| -\infty;3[\text{ et } h'(x) = \frac{4}{(x-4)\sqrt{e^x-1}}]$$

$$| -\infty;3[\text{ et } h'(x) = \frac{4}{(x-4)\sqrt{e^x-1}}]$$

$$| -\infty;3[\text{ et } h'(x) = \frac{4}{(x-4)\sqrt{e^x-1}}]$$

$$| -\infty;3[\text{ et } h'(x) = \frac{4}{(x-4)\sqrt{e^x-1}}]$$

$$| -\infty;3[\text{ et } h'(x) = \frac{4}{(x-4)\sqrt{e^x-1}}]$$

$$| -\infty;3[\text{ et } h'(x) = \frac{4}{(x-4)\sqrt{e^x-1}}]$$

$$| -\infty;3[\text{ et } h'(x) = \frac{4}{(x-4)\sqrt{e^x-1}}]$$

$$| -\infty;3[\text{ et } h'(x) = \frac{4}{(x-4)\sqrt{e^x-1}}]$$

$$| -\infty;3[\text{ et } h'(x) = \frac{4}{(x-4)\sqrt{e^x-1}}]$$

$$| -\infty;3[\text{ et } h'(x) = \frac{4}{(x-4)\sqrt{e^x-1}}]$$

$$| -\infty;3[\text{ et } h'(x) = \frac{4}{(x-4)\sqrt{e^x-1}}]$$

$$| -\infty;3[\text{ et } h'(x) = \frac{4}{(x-4)\sqrt{e^x-1}}]$$

$$| -\infty;3[\text{ et } h'(x) = \frac{4}{(x-4)\sqrt{e^x-1}}]$$

$$| -\infty;3[\text{ et } h'(x) = \frac{4}{(x-4)\sqrt{e^x-1}}]$$

$$| -\infty;3[\text{ et } h'(x) = \frac{4}{(x-4)\sqrt{e^x-1}}]$$

$$| -\infty;3[\text{ et } h'(x) = \frac{4}{(x-4)\sqrt{e^x-1}}]$$

$$| -\infty;3[\text{ et } h'(x) = \frac{4}{(x-4)\sqrt{e^x-1}}]$$

$$| -\infty;3[\text{ et } h'(x) = \frac{4}{(x-4)\sqrt{e^x-1}}]$$

$$| -\infty;3[\text{ et } h'(x) = \frac{4}{(x-4)\sqrt{e^x-1}}]$$

$$| -\infty;3[\text{$$

5) Primitives et la fonction *exp*

Corolaire: Si u est une fonction dérivable alors une primitive de u'(x). $e^{u(x)}$ est $e^{u(x)}$.

Exemple: Déterminer les primitives des fonctions

Professeur	Bahloul Khalid (+212) 622-17-65-52
Chapitre	Fonction exponentielle (l'essentiel du cours + applications)
Niveaux	Bac français / 1 ^{ère} et 2 ^{ème} Bac International SM

$$f(x) = \frac{e^{\sqrt{x}}}{\sqrt{x}}$$

$$g(x) = (e^x)^2$$

Solutions: 1)
$$f(x) = \frac{e^{\sqrt{x}}}{\sqrt{x}}$$
 Si on pose : $u(x) = \sqrt{x}$

$$f(x) = \frac{e^{\sqrt{x}}}{\sqrt{x}}$$

$$g(x) = \left(e^{x}\right)^{2}$$
Solutions: 1) $f(x) = \frac{e^{\sqrt{x}}}{\sqrt{x}}$ Si on pose: $u(x) = \sqrt{x}$

$$2) g(x) = \left(e^{x}\right)^{2}$$
 Si on pose: $u(x) = e^{x}$

On a :
$$f(x) = 2u'(x)e^{u(x)}$$
 si $x > 0$ donc

On a : g(x) = u'(x)u(x) donc les primitives de g

les primitives de f sont :

sont:
$$G(x) = \frac{1}{2}u^2(x) + \lambda = \frac{1}{2}(e^x)^2 + \lambda \quad \lambda \in \mathbb{R}$$

$$F(x) = 2e^{u(x)} + \lambda = 2e^{\sqrt{x}} + \lambda$$
 $\lambda \in \mathbb{R}$

Exercice1

Déterminer une primitive des fonctions suivantes

$$I = \mathbb{R}; f(x) = 2e^{3x} - e^{-x} 2$$

$$I =]0; +\infty[; f(x) = \frac{e^{2x}}{(e^{2x} - 1)^2}$$

$$I = \mathbb{R}; f(x) = e^{x} (e^{x} - 1)^{3}$$

$$I = [0, \pi], f(x) = \sin xe^{\cos x}$$

$$f(x) = \frac{e^x - 1}{e^x - x} \quad I =]0; +\infty[$$

Solutions :1)
$$I = \mathbb{R}$$
; $f(x) = 2e^{3x} - e^{-x}$

$$f(x) = 2e^{3x} - e^{-x} = \frac{2}{3}(3x)'e^{3x} + (-x)'e^{-x}$$

$$F(x) = \frac{2}{3}e^{3x} + e^{-x}$$
 est une primitive de f sur I

3)
$$I = \mathbb{R}$$
; $f(x) = e^x (e^x - 1)^3$

$$f(x) = e^{x}(e^{x}-1)^{3} = (e^{x}-1)'(e^{x}-1)^{3}$$

donc:
$$F(x) = \frac{1}{3+1} (e^x - 1)^{3+1} = \frac{1}{4} (e^x - 1)^4$$
 est une primitive de

$$f$$
 sur I

2)
$$I =]0; +\infty[; f(x) = \frac{e^{2x}}{(e^{2x} - 1)^2}$$

$$f(x) = \frac{e^{2x}}{(e^{2x} - 1)^2} = \frac{1}{2} \frac{(e^{2x} - 1)'}{(e^{2x} - 1)^2}$$

Donc: $F(x) = -\frac{1}{2} \frac{1}{e^{2x} - 1}$ est une primitive de f sur I

4)
$$I = [0; \pi]; f(x) = \sin xe^{\cos x}$$

$$f(x) = \sin x e^{\cos x} = -(\cos x)' e^{\cos x}$$

donc: $F(x) = e^{\cos x}$ est une primitive de f sur I

5)
$$f(x) = \frac{e^x - 1}{e^x - x} = \frac{\left(e^x - x\right)'}{e^x - x}$$
 $I =]0; +\infty[$

donc: $F(x) = \ln |e^x - x|$ est une primitive de f sur I

Professeur	Bahloul Khalid (+212) 622-17-65-52
Chapitre	Fonction exponentielle (l'essentiel du cours + applications)
Niveaux	Bac français / 1 ^{ère} et 2 ^{ème} Bac International SM

6) Etudes des fonctions qui contiennent exp

Exemple1

$$f(x) = (x-1)e^x$$

- 1)Etudier les variations de f et dresser son tableau de variation.
- 2) Etudier les branches infinies de la courbe Cf au voisinage de +∞
- 3) Etudier la concavité de la courbe Cf
- 4) Construire la courbe C_f .

$$f'(x) = ((x-1)e^x)' = (x-1)'e^x + (x-1)(e^x)'$$

$$f'(x) = 1e^x + (x-1)e^x = e^x + xe^x - e^x = xe^x$$

Le signe de : f'(x) est celui de x

Tableau de variation :

+∞		0	$-\infty$	x
	+	þ	-	f'(x)
+∞	<i>></i>		0	f(x)
	1	_1	0	f(x)

Le signe de : f''(x) est celui de : x+1

 $x+1=0 \Leftrightarrow x=-1$

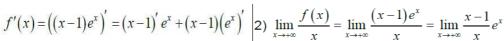
x	$-\infty$	-1	$+\infty$
x+1	1	þ	+

Donc:

 (C_f) est convexe sur $[-1; +\infty]$

 (C_t) est concave sur $]-\infty;-1]$ et $A(-1,-2e^{-1})$ est un

point d'inflexion de (C_i)



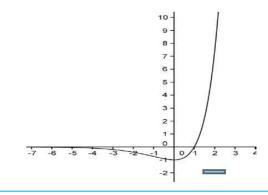
On a: $\lim_{x \to +\infty} \frac{x-1}{x} = \lim_{x \to +\infty} \frac{x}{x} = 1$ et $\lim_{x \to +\infty} e^x = +\infty$ donc:

$$\lim_{x \to +\infty} \frac{f(x)}{x} = \lim_{x \to +\infty} \frac{x-1}{x} e^x = 1 \times (+\infty) = +\infty$$

Donc : la courbe Cf admet une branche parabolique dans la direction de l'axe des ordonnées au voisinage de +∞

3) Etudie de la concavité de la courbe Cf:

$$f''(x) = (xe^x)' = (x)'e^x + x(e^x)' = e^x(1+x)$$



Exemple2

$$f(x) = x - 1 + \frac{3}{e^x + 1}$$

Professeur	Bahloul Khalid (+212) 622-17-65-52
Chapitre	Fonction exponentielle (l'essentiel du cours + applications)
Niveaux	Bac français / 1 ^{ère} et 2 ^{ème} Bac International SM

1) déterminer D_f et calculer les limites aux

bornes de D_f

2)Etudier les variations de f et dresser son tableau de variation.

3)montrer que :
$$(\forall x \in \mathbb{R})$$
; $f(x) = x + 2 - \frac{3e^x}{e^x + 1}$

4) Etudier les branches infinies de la courbe Cf Et étudier la position de la courbe Cf avec les asymptotes obliques

Solutions:

1)
$$D_f = \{ x \in \mathbb{R} / e^x + 1 \neq 0 \}$$

$$e^{x}+1=0 \Leftrightarrow e^{x}=-1$$
 pas de solutions car $e^{x}>0 \ \forall x \in \mathbb{R}$ Et $\lim_{x \to +\infty} \frac{3}{e^{x}+1}=0$

$$\mathsf{Et} \lim_{x \to +\infty} \frac{3}{e^x + 1} = 0$$

Donc:
$$D_f = \mathbb{R}$$

$$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} x - 1 + \frac{3}{e^x + 1} = -\infty \quad \operatorname{car} \lim_{x \to -\infty} x - 1 = -\infty$$

$$\lim_{x\to +\infty} f(x) = \lim_{x\to +\infty} x - 1 + \frac{3}{e^x + 1} = +\infty \quad \text{car } \lim_{x\to +\infty} x - 1 = +\infty \qquad \text{Et } \lim_{x\to -\infty} \frac{3}{e^x + 1} = 3$$

$$\text{Et } \lim_{x \to -\infty} \frac{3}{e^x + 1} = 3$$

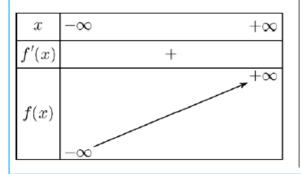
Le signe de :
$$f'(x)$$
 est celui de : $(e^x)^2 - e^x + 1$
2) $f'(x) = \left(x - 1 + \frac{3}{e^x + 1}\right)^x = 1 - 3\frac{\left(e^x + 1\right)^2}{\left(e^x + 1\right)^2} = 1 - 3\frac{e^x}{\left(e^x + 1\right)^2}$ On pose : $e^x = X$ donc on a : $X^2 - X + 1 = 0$
 $\Delta = b^2 - 4ac = 1 - 4 = -3 < 0$

$$f'(x) = \frac{\left(e^x + 1\right)^2 - 3e^x}{\left(e^x + 1\right)^2} = \frac{\left(e^x\right)^2 + 2e^x + 1 - 3e^x}{\left(e^x + 1\right)^2} = \frac{\left(e^x\right)^2 - e^x + 1}{\left(e^x + 1\right)^2}$$
Donc: $X^2 - X + 1 > 0$ (signe de a)
$$Donc: \left(e^x\right)^2 - e^x + 1 > 0 \text{ par suite: } f'(x) > 0$$

Le signe de :
$$f'(x)$$
 est celui de : $(e^x)^2 - e^x + 1$

$$\Delta = b^2 - 4ac = 1 - 4 = -3 < 0$$

Donc:
$$(e^x)^2 - e^x + 1 > 0$$
 par suite: $f'(x) > 0$



3)montrons que :
$$(\forall x \in \mathbb{R})$$
; $f(x) = x + 2 - \frac{3e^x}{e^x + 1}$

$$f(x) = x - 1 + \frac{3}{e^x + 1} = x + 2 - 3 + \frac{3}{e^x + 1}$$

$$f(x) = x + 2 + \frac{-3(e^x + 1) + 3}{e^x + 1} = x + 2 + \frac{-3e^x - 3 + 3}{e^x + 1}$$

$$f(x) = x + 2 - \frac{3e^x}{e^x + 1}$$

Professeur	Bahloul Khalid (+212) 622-17-65-52
Chapitre	Fonction exponentielle (l'essentiel du cours + applications)
Niveaux	Bac français / 1 ^{ère} et 2 ^{ème} Bac International SM

4) Etude des branches infinies?

a)On a
$$f(x) = x - 1 + \frac{3}{e^x + 1}$$
 donc $f(x) - (x - 1) = \frac{3}{e^x + 1}$

Donc:
$$\lim_{x \to +\infty} f(x) - (x-1) = \lim_{x \to +\infty} \frac{3}{e^x + 1} = 0$$

Donc :la courbe Cf est au-dessus de la droite d'équation $(\Delta)y = x-1$

Par suite :la droite d'équation
$$(\Delta)y = x-1$$
 est une asymptote oblique a la courbe Cf au voisinage

b) On a
$$f(x) = x + 2 - \frac{3e^x}{e^x + 1}$$
 donc $f(x) - (x + 2) = -\frac{3e^x}{e^x + 1}$

$$\frac{3}{3}$$

Donc:
$$\lim_{x \to \infty} f(x) - (x+2) = \lim_{x \to \infty} -\frac{3e^x}{e^x + 1} = 0$$

de +∞ et on a aussi :
$$f(x) - (x-1) = \frac{3}{e^x + 1} > 0$$

Par suite :la droite d'équation (D)y = x + 2 est une asymptote oblique a la courbe Cf au voisinage

de
$$-\infty$$
 et on a aussi : $f(x) - (x+2) = -\frac{3e^x}{e^x + 1} < 0$

Donc : la courbe ${\it Cf}$ est au-dessous de la droite

d'équation (D)y = x + 2

II) LA FONCTION EXPONENTIELLE DE BASE a.

1) Définition et résultats

Propriété et définition : Soit a un réel strictement

positif et différent de 1. La fonction \log_a étant

continue et strictement monotone sur]0, +∞[, elle admet donc une fonction réciproque de

$$\mathbb{R} = \log_a (]0, +\infty[) \text{ vers }]0, +\infty[.$$

Cette fonction réciproque s'appelle la fonction exponentielle de base a et se note exp_a

Propriété: Soit a > 0 et $a \neq 1$; on a :

$$(\forall x \in \mathbb{R}) \exp_a(x) = e^{x \ln a}$$

Professeur	Bahloul Khalid (+212) 622-17-65-52			
Chapitre	Fonction exponentielle (l'essentiel du cours + applications)			
Niveaux	Bac français / 1 ^{ère} et 2 ^{ème} Bac International SM			

Résultats immédiats :Soit a > 0 et $a \ne 1$

fonction \exp_a est définie sur $\mathbb R$

1)
$$\forall x \in \mathbb{R} \ \exp_a(x) > 0$$

2)
$$\forall x \in \mathbb{R} \quad \forall y \in \mathbb{R}_+^* \exp_a(x) = y \Leftrightarrow x = \log_a y$$

3)
$$\forall x \in \mathbb{R} \log_a (\exp_a(x)) = x$$

4)
$$\forall x \in \mathbb{R}_{+}^{*} \exp_{a} (\log_{a} (x)) = x$$

Propriété caractéristique :

Soit a > 0 et $a \neq 1$; on a : $(\forall (x, y) \in \mathbb{R}2)$

$$\exp_a(x+y) = \exp_a(x) + \exp_a(y)$$

Propriété : \exp_a est dérivable sur $\mathbb R$

$$(\forall x \in \mathbb{R}) \left(\exp_a(x) \right)' = \left(\ln a \right) e^{x \ln a} = \left(\ln a \right) a^x$$

Monotonie et étude et représentation

Si 0 < a < 1:

On a ln(a) < 0 et par suite : $(\forall x \in \mathbb{R})(exp'_a(x) < 0)$.

$$\lim_{x \to -\infty} f(x) = +\infty \text{ et } \lim_{x \to +\infty} f(x) = 0$$

x	-00	0	1	+00
$exp'_a(x)$	_	-	-	***
$exp_a(x)$	+∞_	1		
				0

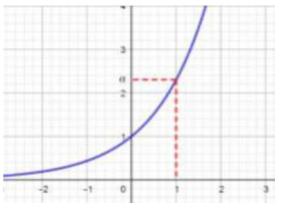
Professeur	Bahloul Khalid (+212) 622-17-65-52		
Chapitre	Fonction exponentielle (l'essentiel du cours + applications)		
Niveaux	Bac français / 1 ^{ère} et 2 ^{ème} Bac International SM		

Si 0 < a < 1:

On a ln(a) > 0 et par suite : $(\forall x \in \mathbb{R})(exp'_a(x) > 0)$.

$$\lim_{x \to -\infty} f(x) = 0 \text{ et } \lim_{x \to +\infty} f(x) = +\infty$$

x	-00	()	1		+00
$exp'_a(x)$		+	+		+	
$exp_a(x)$				1	_	+0
				a		



2) Une autre écriture de la fonction expa

Puissances réelle : La notation a^x

Soit a un réel strictement positif.

- 1) Si a = 1, on pose pour tout réel x > 0: $1^x = 1$
- 2) Si $a \neq 1$, on pose $a^x = e^{x \ln a}$

Propriétés :

 $(\forall a \in \mathbb{R}^{*+})(\forall b \in \mathbb{R}^{*+})(\forall x \in \mathbb{R}) (\forall y \in \mathbb{R})$

$$1) a^x \times a^y = a^{x+y}$$

$$2)(a \times b)^x = a^x \times b^x$$

$$3) \left(a^x\right)^y = a^{x \times y}$$

4)
$$a^{x-y} = \frac{a^x}{a^y}$$

3)
$$(a^x)^y = a^{x \times y}$$
 4) $a^{x-y} = \frac{a^x}{a^y}$ 5) $(\frac{a}{b})^x = \frac{a^x}{b^x}$

$$6) \left(a^x \right)' = a^x \times \ln a$$

- a) $x \rightarrow a^x$ est strictement croissante si a > 1
- b) $x \rightarrow a^x$ est strictement décroissante si 0 < a < 1

Exemples: Résoudre les équations et inéquations suivantes dans $\mathbb R$:

1)
$$5^x = 15$$

2)
$$3^{2x} \ge 5^{1-x}$$

1)
$$5^x = 15$$
 2) $3^{2x} \ge 5^{1-x}$ 3) $7^{x+1} - 7^{-x} < 6$

Pensez au changement de variable 7x=a

Professeur	Bahloul Khalid (+212) 622-17-65-52			
Chapitre	Fonction exponentielle (l'essentiel du cours + applications)			
Niveaux	Bac français / 1 ^{ère} et 2 ^{ème} Bac International SM			

Solution : 1)
$$5^x = 15$$

$$5^x = 15 \Leftrightarrow e^{x \ln 5} = 15 \Leftrightarrow x \ln 5 = \ln 15 \Leftrightarrow x = \frac{\ln 15}{\ln 5}$$

Donc:
$$S = \left\{ \frac{\ln 15}{\ln 5} \right\}$$
...

$$7^{2x+1} - 1 < 6 \times 7^x \Leftrightarrow 7 \times \left(7^x\right)^2 - 6 \times 7^x - 1 < 0$$

on pose :
$$t = 7^x \Leftrightarrow 7t^2 - 6 \times t - 1 < 0$$

2)
$$3^{2x} \ge 5^{1-x} \iff \ln(3^{2x}) \ge \ln(5^{1-x})$$

on a:
$$7t^2 - 6 \times t - 1 = (t-1)(7t+1)$$

$$\Leftrightarrow 2x \ln 3 \ge (1-x) \ln 5 \Leftrightarrow x(2 \ln 3 + \ln 5) \ge \ln 5 \quad 7^{x+1} - 7^{-x} \le 6 \Leftrightarrow (7^x - 1)(7 \times 7^x + 1) \le 0$$

$$\Leftrightarrow (7^{x} - 1)(7^{x+1} + 1) < 0 \Leftrightarrow 7^{x} - 1 < 0 \text{ car } 7^{x+1} > 0$$

Donc:
$$S = \left\lceil \frac{\ln 5}{2 \ln 3 + \ln 5}; +\infty \right\rceil$$

$$\Leftrightarrow 7^x \prec 1 \Leftrightarrow 7^x \prec 7^0 \Leftrightarrow x \prec 0 \text{ car } x \to 7^x \text{ est}$$

3)
$$7^{x+1} - 7^{-x} < 6 \Leftrightarrow 7^{x+1} - \frac{1}{7^x} < 6$$
 on a $7^x > 0$ strictement croissante $(7 > 1)$ donc : $S =]-\infty;0[$

strictement croissante
$$(7 \succ 1)$$
donc : $S =]-\infty;0[$

4) $100^x + 40 = 14 \times 10^x \iff 10^{2x} - 14 \times 10^x + 40 = 0$

 $\Leftrightarrow (10^x)^2 - 14 \times 10^x + 40 = 0$ on pose: $10^x = X$

Exercice6: Résoudre les équations et inéquations suivantes dans $\mathbb R$:

1)
$$2^{x+1} = 8^x$$

2)
$$3^x = 12$$

1)
$$2^{x+1} = 8^x$$
 2) $3^x = 12$ 4) $100^x + 40 = 14 \times 10^x$

Solution :1)
$$2^{x+1} = 8^x \Leftrightarrow 2^{x+1} = (2^3)^x \Leftrightarrow 2^{x+1} = 2^{3x}$$

$$x+1=3x \Leftrightarrow 1=2x \Leftrightarrow \frac{1}{2}=x \text{ donc} : S=\left\{\frac{1}{2}\right\}$$

On a alors :
$$X^2 - 14X + 40 = 0$$

2)
$$3^x = 12 \iff x = \log_3 12$$
 donc: $S = \{\log_3 12\}$

$$\Delta = b^2 - 4ac = (-14)^2 - 4 \times 40 = 36 > 0$$

$$X_1 = \frac{14+6}{2\times 1}$$
 et $X_2 = \frac{14-6}{2\times 1}$ donc : $X_1 = 10$ et $X_2 = 4$

Donc:
$$10^{x_1} = 10$$
 et $10^{x_2} = 4$ donc: $x_1 = 1$ et

$$x_2 = \log_{10} 4$$
 Donc: $S = \{1, \log_{10} 4\}$

Professeur	Bahloul Khalid (+212) 622-17-65-52			
Chapitre	Fonction exponentielle (l'essentiel du cours + applications)			
Niveaux	Bac français / 1 ^{ère} et 2 ^{ème} Bac International SM			

Exercice7: Soit La fonction f définie par :

$$f(x) = 4^x - 2^{x+1}$$

- 1)déterminer D_f
- 2) calculer les limites aux bornes de D_f
- 3)Etudier les variations de f et dresser son tableau de variation.
- 4) Etudier les branches infinies de la courbe Cf
- 5) construire la courbe C_f dans un repére $(O; \vec{i} \ \vec{j})$

Solutions: 1) $f(x) = e^{x \ln 4} - e^{(x+1) \ln 2}$

Donc: $D_f = \mathbb{R}$

$$2) \lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} e^{2x \ln 2} - e^{(x+1)\ln 2} = \lim_{x \to +\infty} e^{x \ln 2} \left(e^{x \ln 2} - 2 \right) = +\infty$$
 Tableau de variation de f :

Car: $\lim_{x \to \infty} e^{x} = +\infty$

$$\lim_{x \to -\infty} f(x) = \lim_{x \to +\infty} e^{2x \ln 2} - e^{(x+1) \ln 2} = 0 \text{ Car} : \lim_{x \to -\infty} e^{x} = 0$$

3) f est dérivable sur \mathbb{R} car la somme de fonctions dérivables sur R :

$$\forall x \in \mathbb{R} : f'(x) = 2 \ln 2 \times e^{x \ln 2} \times \left(e^{x \ln 2} - 1\right)$$

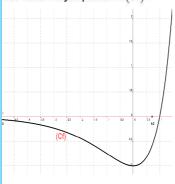
$$f'(x) = 0 \Leftrightarrow e^{x \ln 2} - 1 = 0 \Leftrightarrow x = 0$$

$-\infty$	0	$+\infty$
	ģ	+
)		→ +∞
	-∞ - 0 <u> </u>	-∞ 0 - 0

4) Etude des branches infinies de la courbe Cf:

a)on a :
$$\lim_{x \to 0} f(x) = 0$$
 donc : $y = 0$

est une asymptote a(C)



$$\lim_{x \to +\infty} \frac{f(x)}{x} = \lim_{x \to +\infty} \frac{e^{x \ln 2}}{x} \left(e^{x \ln 2} - 2\right) = +\infty$$

Car:
$$\lim_{X \to +\infty} \frac{e^X}{X} = +\infty$$
 et $\lim_{X \to +\infty} e^X = +\infty$

Donc : la courbe Cf admet une branche parabolique dans la direction de l'axe des ordonnées au voisinage de +∞