Professeur	Bahloul Khalid (+212) 622-17-65-52			
Chapitre	Fonction primitive (l'essentiel du cours + applications)			
Niveaux	Bac français / 1 ^{ère} et 2 ^{ème} Bac International SM			

Fonctions primitives

I) FONCTION PRIMITIVE D'UNE FONCTION 1) Activités

1) Déterminer une fonction F qui admet pour fonction dérivée la fonction : $f(x) = x^2 + 2x + 3$

2) existe-t-il une autre fonction Gtel que :

$$(\forall x \in \mathbb{R}); G'(x) = f(x)$$
?

3)combien Ya t'ils de onction H tel que :

$$(\forall x \in \mathbb{R}); H'(x) = f(x)$$
?

et donner une expression de toutes les fonctions primitives de *h*

2) Définition et propriétés

Définition: Soit f une fonction définir sur un intervalle I; On dit que la fonction F est une fonction primitive de la fonction f sur l'intervalle I si :1)F est dérivable sur I 2) ($\forall x \in I$)(F'(x) = f(x))

Théorème :(admis)

Si f est continue sur I alors f admet une fonction primitive sur I

Propriété: Si f admet une fonction primitive F sur I alors toutes les fonctions primitives de f sur I s'écrivent de la : forme : $F + \lambda$ où λ est un réel.

Propriété: Si F_1 et F_2 sont deux fonction primitive d'une fonction f sur I alors :

$$(\forall x \in I)(F_2(x) = F_1(x) + \lambda) \text{ où } \lambda \in \mathbb{R}$$

Propriété :Si f admet une fonction primitive sur I et $x_0 \in I$; alors il existe une unique fonction F_0 fonction Primitive de f telle que $F_0(x_0) = y_0$ où

 y_0 un réel quelconque.

Professeur	Bahloul Khalid (+212) 622-17-65-52			
Chapitre	Fonction primitive (l'essentiel du cours + applications)			
Niveaux	Bac français / 1 ^{ère} et 2 ^{ème} Bac International SM			

Exemple: Soit la fonction f définie sur $]0;+\infty[$

par:
$$f(x) = 2x^2 + x + 1 + \frac{1}{x^2}$$

- 1)Déterminer les fonctions primitives de la fonction f sur $]0;+\infty[$
- 2)Déterminer la fonction primitive de la fonction f sur $]0;+\infty[$ tel que : F(1)=3

Solution :1)
$$f(x) = 2x^2 + x + 1 + \frac{1}{x^2}$$
 $F(1) = 3 \Leftrightarrow \frac{2}{3} + \frac{1}{2} + 1 - 1 + k = 3 \Leftrightarrow \frac{7}{6} + k = 3 \Leftrightarrow k = \frac{11}{6}$
Donc : $F(x) = 2 \times \frac{1}{3} x^{2+1} + \frac{1}{2} x^{1+1} + 1 x - \frac{1}{x^2} + k$ Donc : la fonction primitive de la fonction f sur Donc : $F(x) = \frac{2}{3} x^3 + \frac{1}{2} x^2 + x - \frac{1}{x} + k$ avec $k \in \mathbb{R}$ $\left[0; +\infty\right[$ tel que : $F(1) = 3$ est : $F(x) = \frac{2}{3} x^3 + \frac{1}{2} x^2 + x - \frac{1}{4} + \frac{11}{6}$

Propriété: Si F est une fonction primitive de la fonction f sur l'intervalle I et G une fonction primitive de la fonction g sur l'intervalle I et α un réel alors :

- 1) (F + G) est une fonction primitive de la fonction (f + g) sur I
- 2) (αF) est une fonction primitive de la fonction (αf) sur I

Professeur	Bahloul Khalid (+212) 622-17-65-52
Chapitre	Fonction primitive (l'essentiel du cours + applications)
Niveaux	Bac français / 1 ^{ère} et 2 ^{ème} Bac International SM

3) Tableau des fonctions primitives usuelles.

La fonction	Sa fonction primitive
$\alpha \ (\alpha \in \mathbb{R})$	$\alpha x + c$
$x^n \ (n \in \mathbb{N})$	$\frac{1}{n+1}x^{n+1}+c$
\sqrt{x}	$\frac{2}{3}\sqrt{x^3}+c$
$\sqrt[n]{x}$	$\frac{n}{n+1}\sqrt[n]{x^{n+1}}$
$x^r \ (r \in \mathbb{Q}/\{-1\})$	$\frac{1}{r+1}x^{r+1}+c$
sin(ax + b)	$\frac{-1}{a}\cos(ax+b)+c$
cos(ax+b)	$\frac{1}{a}\sin(ax+b)+c$

4) Opérations sur les fonctions primitives.

La fonction	Sa fonction primitive
u' + v'	$u + v + C^{te}$
$\alpha u'$	$\alpha u + C^{te}$
$u'u^n \ (n \in \mathbb{N})$	$\frac{1}{n+1}u^{n+1} + C^{te}$
$\frac{u'}{u^2}$	$\frac{-1}{u} + C^{te}$
$\frac{u'}{2\sqrt{u}}$	$\sqrt{u} + C^{te}$
$u'\sqrt[n]{u} \ (n \in \mathbb{N}^*)$	$\frac{n}{n+1} \sqrt[n]{u^{n+1}} + C^{te}$
$u'u^r \ (r \in \mathbb{Q}/\{-1\})$	$\frac{1}{r+1}u^{r+1} + C^{te}$
$u' \times v'ou$	$vou + C^{te}$

5) Application

Exercice1 (situation directe): Déterminer une fonction primitive des fonctions suivantes :

1)
$$f(x) = 5x^4 + 3x + 1$$
 2) $f(x) = \frac{1}{\sqrt{x}} + \cos x + \sin x - 1$

3)
$$f(x) = \sin x + x \cos x$$
 4) $f(x) = (2x-1)^3$

5)
$$f(x) = \frac{x}{(x^2 - 1)^2}$$
 6) $f(x) = 5x\sqrt[3]{3x^2 + 1}$

7)
$$f(x) = \frac{4x+1}{(2x^2+x)^4}$$
 8) $f(x) = 7x\cos(\pi x^2 + 3)$

Professeur	Bahloul Khalid (+212) 622-17-65-52			
Chapitre	Fonction primitive (l'essentiel du cours + applications)			
Niveaux	Bac français / 1 ^{ère} et 2 ^{ème} Bac International SM			

Solutions	:	1)	f(x)	$=5x^4$	+3x+1
-----------	---	----	------	---------	-------

$$F(x) = 5 \times \frac{1}{5} x^5 + 3 \times \frac{1}{2} x^2 + 1x + k \text{ avec } k \in \mathbb{R}$$

$$2) f(x) = \frac{1}{\sqrt{x}} + \cos x + \sin x - 1$$

$$F(x) = 2\sqrt{x} + \sin x - \cos x - x + k$$
 avec $k \in \mathbb{R}$

$$F(x) = \frac{1}{8}(2x-1)^4 + k \text{ avec } k \in \mathbb{R}$$

5)
$$f(x) = -\frac{x}{(x^2-1)^2}$$

on doit remarquer que :
$$f(x) = -\frac{(x^2 - 1)'}{(x^2 - 1)^2}$$

et par suite :
$$F(x) = \frac{1}{x^2 - 1} + k$$
 avec $k \in \mathbb{R}$

(c'est de la forme : $u'\sqrt[n]{u}$ (n = 3))

Donc les fonctions primitives de f s'écrivent sous

la forme :
$$F(x) = \frac{5}{6} \frac{3}{4} \sqrt[3]{u^4(x)} + k$$

$$F(x) = \frac{5}{8} \sqrt[3]{(3x^2+1)^4} + k \quad \text{avec } k \in \mathbb{R}$$

3) $f(x) = \sin x + x \cos x = x' \sin x + x (\sin x)'$

Donc: $F(x) = x \times \sin x + k$ avec $k \in \mathbb{R}$

4)
$$f(x) = (2x-1)^3 = \frac{1}{2}(2x-1)^3 (2x-1)^3$$

$$F(x) = \frac{1}{2} \times \frac{1}{3+1} (2x-1)^{3+1} + k \text{ avec } k \in \mathbb{R}$$

6)
$$f(x) = 5x\sqrt[3]{3x^2 + 1}$$
 On doit remarquer que :

la fonction $u(x) = 3x^2 + 1$ donne u'(x) = 6x et par

suite :
$$f(x) = \frac{5}{6}u'(x)\sqrt[3]{u(x)}$$
 on utilisant le tableau

7) Déterminons une fonction primitive de :

$$f(x) = \frac{4x+1}{(2x^2+x)^4}$$
 On doit remarquer que :

la fonction $u(x) = 2x^2 + x$ donne u'(x) = 4x + 1

et par suite :
$$f(x) = \frac{u'(x)}{u^4(x)} = u'(x)u^{-4}(x)$$

En utilisant le tableau on a :

(c'est de la forme : $u'u^n$ (n = -4))

Donc les fonctions primitives de f s'écrivent sous

la forme :
$$F(x) = \frac{1}{-4+1}u^{-4+1}(x) + k$$

$$F(x) = -\frac{1}{3}(2x^2 + x)^{-3} + k = -\frac{1}{3}\frac{1}{(2x^2 + x)^3} + k$$

8)
$$f(x) = 7x\cos(\pi x^2 + 3)$$
 On doit remarquer que :

la fonction
$$u(x) = \pi x^2 + 3$$
 donne $u'(x) = 2\pi x$

et par suite :
$$f(x) = \frac{7}{2\pi}u'(x)\cos(u(x))$$

(c'est de la forme :
$$u' \times (v' \circ u)$$
)

Donc les fonctions primitives de f s'écrivent sous

la forme :
$$F(x) = \frac{7}{2\pi} \sin(\pi x^2 + 3) + k$$
 avec $k \in \mathbb{R}$

Professeur	Bahloul Khalid (+212) 622-17-65-52
Chapitre	Fonction primitive (l'essentiel du cours + applications)
Niveaux	Bac français / 1 ^{ère} et 2 ^{ème} Bac International SM

Exercice2 : Déterminer une fonction primitive de

fonction suivante : $f(x) = \frac{6}{4x^2 + 4x + 1}$

Solutions: A remarquer que

$$f(x) = \frac{6}{(2x+1)^2} = (-3)\left(-\frac{(2x+1)'}{(2x+1)^2}\right)$$
 (C'est de la forme: $-\frac{u'}{u^2}$)

Donc les fonctions primitives de la fonction f sont

les fonctions : $F(x) = \frac{-3}{2x+1} + k$ avec $k \in \mathbb{R}$

Exercice3: Déterminer les fonctions primitives des fonctions :

$$1) f(x) = \frac{\sin x}{\sqrt[3]{2 + \cos x}}$$

2)
$$f(x) = 2x \sin x + x^2 \cos x$$
 3) $f(x) = (4x + 5)^2$

4)
$$f(x) = 2\sqrt{2x+1}$$
 5) $f(x) = \frac{x}{\sqrt{x^2+1}}$

6)
$$f(x) = x\sqrt{x^2 + 1}$$
 7) $f(x) = \tan^2 x$

Solutions : 1) il faut faire des transformations : a remarquer que :

1)
$$f(x) = \frac{\sin x}{\sqrt[3]{2 + \cos x}} = -(2 + \cos x)'(2 + \cos x)^{-\frac{1}{3}}$$

2)
$$f(x) = 2x \sin x + x^2 \cos x = (x^2)' \sin x + x^2 (\sin x)'$$

Donc:
$$F(x) = x^2 \times \sin x + k$$
 avec $k \in \mathbb{R}$

3)
$$f(x) = (4x+5)^2 = \frac{1}{4}(4x+5)'(4x+5)^2$$

$$F(x) = \frac{1}{4} \times \frac{1}{2+1} (4x+5)^{2+1} + k$$

$$F(x) = \frac{1}{12}(4x+5)^3 + k$$
 avec $k \in \mathbb{R}$

(c'est de la forme : $u'u^n$)

Donc les fonctions primitives de f s'écrivent sous la forme :

$$F(x) = -\frac{1}{-\frac{1}{3}+1} (2+\cos x)^{\frac{1}{3}+1} + k = -\frac{3}{2} (2+\cos x)^{\frac{2}{3}} + k$$

$$F(x) = -\frac{3}{2}\sqrt[3]{(2+\cos x)^2} + k$$
 avec $k \in \mathbb{R}$

4)
$$f(x) = 2\sqrt{2x+1} = (2x+1)'(2x+1)^{\frac{1}{2}}$$

Donc:
$$F(x) = \frac{1}{\frac{1}{2}+1} (2x+1)^{\frac{1}{2}+1} = \frac{2}{3} (2x+1)^{\frac{3}{2}}$$

$$F(x) = \frac{2}{3}(2x+1)^{\frac{3}{2}} = \frac{2}{3}(\sqrt{2x+1})^3 + k$$

5)
$$f(x) = \frac{x}{\sqrt{x^2 + 1}} = \frac{(x^2 + 1)'}{2\sqrt{x^2 + 1}}$$

$$F(x) = \sqrt{x^2 + 1} + k$$
 avec $k \in \mathbb{R}$

Professeur	Bahloul Khalid (+212) 622-17-65-52			
Chapitre	Fonction primitive (l'essentiel du cours + applications)			
Niveaux	Bac français / 1 ^{ère} et 2 ^{ème} Bac International SM			

6)
$$f(x) = x\sqrt{x^2 + 1} = \frac{1}{2}(x^2 + 1)'(x^2 + 1)^{\frac{1}{2}}$$

$$F(x) = \frac{1}{2} \frac{1}{\frac{1}{2} + 1} (x^2 + 1)^{\frac{1}{2} + 1} + k = \frac{1}{3} (x^2 + 1)^{\frac{3}{2}} + k$$

$$7) \quad f(x) = \tan^2 x = (1 + \tan^2 x) - 1$$

$$F(x) = \frac{1}{3} (\sqrt{x^2 + 1})^3 + k \text{ avec } k \in \mathbb{R} \qquad F(x) = \tan x - x + k \quad \text{avec } k \in \mathbb{R}$$

$$F(x) = \frac{1}{3} \left(\sqrt{x^2 + 1} \right)^3 + k \text{ avec } k \in \mathbb{R}$$

$$F(x) = \tan x - x + k$$
 avec $k \in \mathbb{R}$