Professeur	Bahloul Khalid (+212) 622-17-65-52
Chapitre	Fonctions trigonométriques (l'essentiel du cours + applications)
Niveaux	1 ^{ère} et 2 ^{ème} Bac français et Bac International

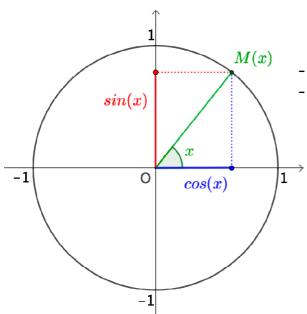
L'histoire des <u>fonctions trigonométriques</u> semble avoir débuté il y a environ 4 000 ans. Nous savons de façon certaine que les <u>Babyloniens</u> déterminaient des approximations de mesures d'angles ou de longueurs de côtés de triangles rectangles. Plusieurs tables de nombres gravés sur de l'argile séchée en témoignent

Pythagore

1 : Cosinus, sinus et cercle trigonométrique

A l'aide du cercle trigonométrique (de rayon 1 et de centre O), il est possible de lire le cosinus et le sinus d'un nombre.

Le cosinus se lit sur l'axe des abscisses et le sinus sur l'axe des ordonnées.

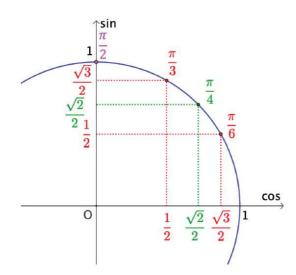


- Le **cosinus** de x est l'abscisse de M et on note **cos**(x).
- Le sinus de x est l'ordonnée de M et on note $\sin(x)$.

Propriétés:

1)
$$-1 \le \sin(x) \le 1$$
 et $-1 \le \cos(x) \le 1$

2)
$$\cos^2(x) + \sin^2(x) = 1$$



Valeurs remarquables à apprendre

x	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	π
$\cos(x)$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	-1
sin(x)	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	0

Professeur	Bahloul Khalid (+212) 622-17-65-52
Chapitre	Fonctions trigonométriques (l'essentiel du cours + applications)
Niveaux	1 ^{ère} et 2 ^{ème} Bac français et Bac International

2 : Résoudre une équation et inéquation trigonométrique

- 1) Résoudre dans \mathbb{R} l'équation : $\cos^2(x) = \frac{1}{2}$.
- 2) Résoudre dans $[-\pi ; \pi]$, l'inéquation : $\sin(x) \le \frac{\sqrt{3}}{2}$

Correction

1)
$$\cos^2(x) = \frac{1}{2}$$

$$\cos^2(x) - \frac{1}{2} = 0$$

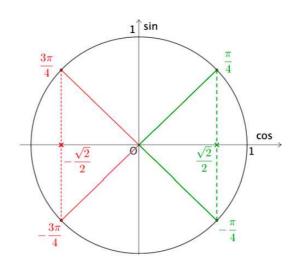
$$\cos^2(x) - \left(\sqrt{\frac{1}{2}}\right)^2 = 0$$

$$\cos^2(x) - \left(\frac{\sqrt{2}}{2}\right)^2 = 0$$

En effet :
$$\sqrt{\frac{1}{2}} = \frac{1}{\sqrt{2}} = \frac{1 \times \sqrt{2}}{\sqrt{2} \times \sqrt{2}} = \frac{\sqrt{2}}{2}$$

Soit :

$$\left(\cos(x) - \frac{\sqrt{2}}{2}\right) \left(\cos(x) + \frac{\sqrt{2}}{2}\right) = 0$$



$$\cos(x) = \frac{\sqrt{2}}{2} \text{ ou } \cos(x) = -\frac{\sqrt{2}}{2}$$

$$\begin{cases} x = \frac{\pi}{4} + 2k_1\pi, & k_1 \in \mathbb{Z} \\ x = -\frac{\pi}{4} + 2k_2\pi, & k_2 \in \mathbb{Z} \end{cases} \text{ ou } \begin{cases} x = \frac{3\pi}{4} + 2k_3\pi, & k_3 \in \mathbb{Z} \\ x = -\frac{3\pi}{4} + 2k_4\pi, & k_4 \in \mathbb{Z} \end{cases}$$

$$2)\sin(x) \le \frac{\sqrt{3}}{2}$$

- On commence par résoudre l'équation $\sin(x) = \frac{\sqrt{3}}{2}$ dans $[-\pi; \pi]$.

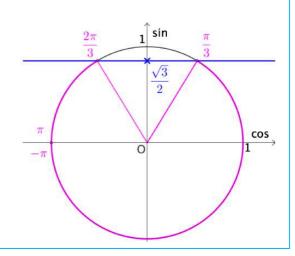
Soit :
$$x = \frac{\pi}{3}$$
 ou $x = \frac{2\pi}{3}$.

- On veut des valeurs de sinus inférieures à $\frac{\sqrt{3}}{2}$.

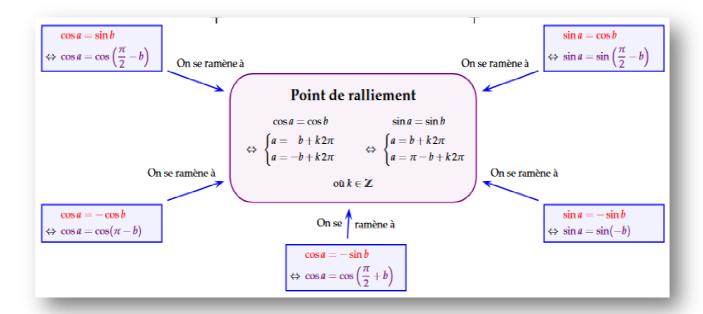
Elles correspondent à la partie du cercle trigonométrique située en dessous des points associés à $\frac{\pi}{3}$ et $\frac{2\pi}{3}$.

Ainsi:

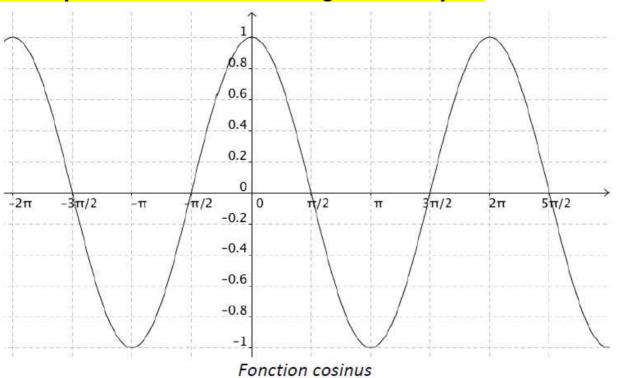
$$S = \left[-\pi \; ; \, \frac{\pi}{3} \right] \cup \left[\frac{2\pi}{3} \; ; \; \pi \right]$$



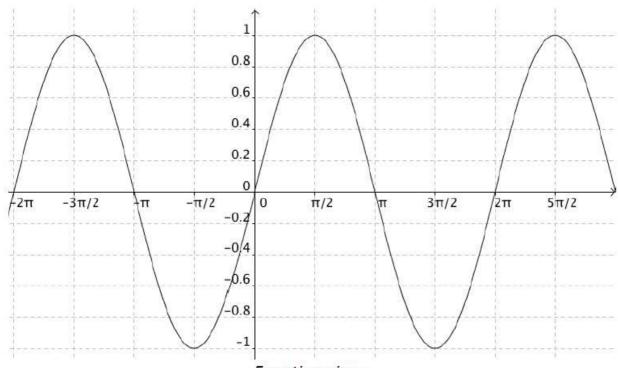
Professeur	Bahloul Khalid (+212) 622-17-65-52
Chapitre	Fonctions trigonométriques (l'essentiel du cours + applications)
Niveaux	1 ^{ère} et 2 ^{ème} Bac français et Bac International



3 : Propriétés des fonctions trigonométriques



Professeur	Bahloul Khalid (+212) 622-17-65-52
Chapitre	Fonctions trigonométriques (l'essentiel du cours + applications)
Niveaux	1 ^{ère} et 2 ^{ème} Bac français et Bac International



- Fonction sinus
- 1) $cos(x) = cos(x + 2k\pi)$ où k entier relatif.
- 2) $\sin(x) = \sin(x + 2k\pi)$ où k entier relatif.
- La fonction cosinus est paire et on a : cos(-x) = cos(x)
- La fonction sinus est impaire et on a : sin(-x) = -sin(x)

Fonction	Dérivée
cos(x)	$-\sin(x)$
sin(x)	cos(x)
cos(ax + b) $a ext{ et } b ext{ réels}$	$-a\sin(ax+b)$
sin(ax + b) a et b réels	$a\cos(ax+b)$

x	0		π
$\cos'(x) = -\sin(x)$	0	_	0
cos(x)	1		-1

Professeur	Bahloul Khalid (+212) 622-17-65-52
Chapitre	Fonctions trigonométriques (l'essentiel du cours + applications)
Niveaux	1 ^{ère} et 2 ^{ème} Bac français et Bac International

x	0		$\frac{\pi}{2}$		π
$\sin'(x) = \cos(x)$		+	0	-	
sin(x)	0 -		y 1		* 0

Application 1

Résoudre dans \mathbb{R} les équations suivantes :

a)
$$\cos x = \frac{\sqrt{2}}{2}$$
 b) $\cos x = -\frac{1}{2}$ c) $\cos^2 x = \frac{1}{2}$

Correction: a)
$$\cos x = \frac{\sqrt{2}}{2}$$
 ssi $\cos x = \cos \frac{\pi}{4}$

Donc les solutions de l'équation dans $\mathbb R$ sont :

$$S_{\mathbb{R}} = \left\{ \frac{\pi}{4} + 2k\pi; -\frac{\pi}{4} + 2k\pi / k \in \mathbb{Z} \right\}$$

$$\cos x = -\frac{1}{2}$$
 ssi $\cos x = -\cos\frac{\pi}{3}$ ssi

$$\cos x = \cos\left(\pi - \frac{\pi}{3}\right)$$
 SSi $\cos x = \cos\left(\frac{2\pi}{3}\right)$

Donc les solutions de l'équation dans $\mathbb R$ sont :

$$S_{\mathbb{R}} = \left\{ \frac{2\pi}{3} + 2k\pi; -\frac{2\pi}{3} + 2k\pi / k \in \mathbb{Z} \right\}$$

c)
$$\cos^2 x = \frac{1}{2} \Leftrightarrow \cos^2 x - \frac{1}{2} = 0 \Leftrightarrow \left(\cos x - \frac{\sqrt{2}}{2}\right) \left(\cos x + \frac{\sqrt{2}}{2}\right) = 0$$

$$\Leftrightarrow \cos x = \frac{\sqrt{2}}{2}$$
 ou $\cos x = -\frac{\sqrt{2}}{2}$ $\Leftrightarrow \cos x = \cos \frac{\pi}{4}$ ou $\cos x = \cos \frac{3\pi}{4}$

 $S_{\mathbb{R}} = \left\{ \frac{\pi}{4} + 2k\pi \; ; -\frac{\pi}{4} + 2k\pi \; ; \frac{3\pi}{4} + 2k\pi \; ; -\frac{3\pi}{4} + 2k\pi \; \right\} avec \; k \in \mathbb{Z}$

Application 2

Résoudre dans $\mathbb R$ les équations suivantes :

a)
$$\sin x = \frac{\sqrt{3}}{2}$$

b)
$$\sin x = -\frac{1}{2}$$
 c) $\sin^2 x = \frac{1}{2}$

$$c)\sin^2 x = \frac{1}{2}$$

Professeur	Bahloul Khalid (+212) 622-17-65-52
Chapitre	Fonctions trigonométriques (l'essentiel du cours + applications)
Niveaux	1 ^{ère} et 2 ^{ème} Bac français et Bac International

Correction: a)
$$\sin x = \frac{\sqrt{3}}{2}$$
 ssi $\sin x = \sin \frac{\pi}{3}$

Donc les solutions de l'équation dans $\mathbb R$ sont :

$$S_{\mathbb{R}} = \left\{ \frac{\pi}{3} + 2k\pi; \pi - \frac{\pi}{3} + 2k\pi / k \in \mathbb{Z} \right\}$$

$$S_{\mathbb{R}} = \left\{ \frac{\pi}{3} + 2k\pi; \frac{2\pi}{3} + 2k\pi / k \in \mathbb{Z} \right\}$$

b)
$$\sin x = -\frac{1}{2} \operatorname{ssi} \sin x = -\sin \frac{\pi}{6} \operatorname{ssi} \sin x = \sin \left(-\frac{\pi}{6}\right)$$
 c) $\sin^2 x = \frac{1}{2} \Leftrightarrow \sin^2 x - \frac{1}{2} = 0 \Leftrightarrow \left(\sin x - \frac{\sqrt{2}}{2}\right) \left(\sin x + \frac{\sqrt{2}}{2}\right) = 0$

L'équation a pour solution $-\frac{\pi}{6} + 2k\pi$ et

$$\pi - \left(-\frac{\pi}{6}\right) + 2k\pi = \frac{7\pi}{6} + 2k\pi \text{ où } k \in \mathbb{Z}$$

Donc les solutions de l'équation dans $\mathbb R$ sont :

$$S_{\mathbb{R}} = \left\{ -\frac{\pi}{6} + 2k\pi; \frac{7\pi}{6} + 2k\pi / k \in \mathbb{Z} \right\}$$

c)
$$\sin^2 x = \frac{1}{2} \Leftrightarrow \sin^2 x - \frac{1}{2} = 0 \Leftrightarrow \left(\sin x - \frac{\sqrt{2}}{2}\right) \left(\sin x + \frac{\sqrt{2}}{2}\right) = 0$$

$$\Leftrightarrow \sin x = \frac{\sqrt{2}}{2}$$
 ou $\sin x = -\frac{\sqrt{2}}{2} \Leftrightarrow \sin x = \sin \frac{\pi}{4}$ ou $\sin x = \sin \left(-\frac{\pi}{4}\right)$

Ainsi:
$$S_{ik} = \left\{ \frac{\pi}{4} + 2k\pi; -\frac{\pi}{4} + 2k\pi; \frac{5\pi}{4} + 2k\pi; \frac{3\pi}{4} + 2k\pi \right\}$$
 avec $k \in \mathbb{Z}$

4 : équations et propriétés à retenir

$$\tan(x) = \frac{\sin(x)}{\cos(x)} \text{ définie si } x \neq \frac{\pi}{2} \ (\pi) \quad \cot(x) = \frac{1}{\tan(x)} = \frac{\cos(x)}{\sin(x)} \text{ définie si } x \neq 0 \ (\pi)$$

$$\cos^2(x) + \sin^2(x) = 1 \left[1 + \tan^2(x) = \frac{1}{\cos^2(x)} \text{ si } x \neq \frac{\pi}{2} (\pi) \right] 1 + \cot^2(x) = \frac{1}{\sin^2(x)} \text{ si } x \neq 0 (\pi)$$

$$\cos(-a) = \cos(a) \quad \sin(-a) = -\sin(a) \quad \tan(-a) = -\tan(a) \quad \cot(-a) = -\cot(a)$$

$\cos(\pi - x) = -\cos(x)$	$\cos\left(\frac{\pi}{2} - x\right) = \sin(x)$	$\cos(\pi + x) = -\cos(x)$	$\cos\left(x + \frac{\pi}{2}\right) = -\sin(x)$
$\sin\left(\pi - x\right) = \sin\left(x\right)$	$\sin\left(\frac{\pi}{2} - x\right) = \cos(x)$	$\sin\left(\pi + x\right) = -\sin\left(x\right)$	$\sin\left(x + \frac{\pi}{2}\right) = \cos(x)$
$\tan(\pi - x) = -\tan(x)$	$\tan\left(\frac{\pi}{2} - x\right) = \cot(x)$	$\tan\left(\pi+x\right) = \tan\left(x\right)$	$\tan\left(x + \frac{\pi}{2}\right) = -\cot(x)$

Valeurs remarquables:

	0	<u>π</u>	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{2\pi}{3}$	π
cos	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	$-\frac{1}{2}$	-1
sin	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	$\frac{\sqrt{3}}{2}$	0
tan	0	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$	=	$-\sqrt{3}$	0

Professeur	Bahloul Khalid (+212) 622-17-65-52
Chapitre	Fonctions trigonométriques (l'essentiel du cours + applications)
Niveaux	1 ^{ère} et 2 ^{ème} Bac français et Bac International

Formules d'addition

$\cos(a+b) = \cos(a)\cos(b) - \sin(a)\sin(b)$	$\cos(a-b) = \cos(a)\cos(b) + \sin(a)\sin(b)$
$\sin(a+b) = \sin(a)\cos(b) + \cos(a)\sin(b)$	$\sin(a-b) = \sin(a)\cos(b) - \cos(a)\sin(b)$
$\tan(a+b) = \frac{\tan(a) + \tan(b)}{1 - \tan(a)\tan(b)}$	$\tan(a-b) = \frac{\tan(a) - \tan(b)}{1 + \tan(a)\tan(b)}$

En particulier on a les relations suivantes avec l'angle double :

$$\cos(2a) = \cos^2(a) - \sin^2(a) = 2\cos^2(a) - 1 = 1 - 2\sin^2(a)$$

$$\sin(2a) = 2\sin(a)\cos(a)$$

$$\tan(2a)$$

$$\tan(2a) = \frac{2\tan(a)}{1-\tan^2(a)}$$

$$\cos^{2}(a) = \frac{1 + \cos(2a)}{2}$$
$$\sin^{2}(a) = \frac{1 - \cos(2a)}{2}$$

Formules de linéarisation :

$$\sin(a)\cos(b) = \frac{1}{2}\left[\sin(a+b) + \sin(a-b)\right]$$

$$\cos(a)\cos(b) = \frac{1}{2}\left[\cos(a+b) + \cos(a-b)\right]$$

$$\sin(a)\sin(b) = -\frac{1}{2}\left[\cos(a+b) - \cos(a-b)\right]$$

$$\sin(p)+\sin(q)=2\sin\left(\frac{p+q}{2}\right)\cos\left(\frac{p-q}{2}\right)$$

$$\sin(p) - \sin(q) = 2\cos\left(\frac{p+q}{2}\right)\sin\left(\frac{p-q}{2}\right)$$

$$\cos(p) + \cos(q) = 2\cos\left(\frac{p+q}{2}\right)\cos\left(\frac{p-q}{2}\right)$$

$$\cos(p)-\cos(q)=-2\sin\left(\frac{p+q}{2}\right)\sin\left(\frac{p-q}{2}\right)$$

Professeur	Bahloul Khalid (+212) 622-17-65-52
Chapitre	Fonctions trigonométriques (l'essentiel du cours + applications)
Niveaux	1 ^{ère} et 2 ^{ème} Bac français et Bac International

Equations trigonométrique

Lien avec l'exponentielle complexe

$$e^{ix}=\cos(x)+i\sin(x)$$

$$e^{ix} = \cos(x) + i\sin(x)$$

$$\cos(x) = \operatorname{Re}(e^{ix}) = \frac{1}{2} \left(e^{ix} + e^{-ix} \right) \quad \sin(x) = \operatorname{Im}(e^{ix}) = \frac{1}{2i} \left(e^{ix} - e^{-ix} \right)$$

Relations avec la tangente de l'angle moitié

$$a \neq \pi \ (2\pi), \text{ on pose } t = \tan\left(\frac{a}{2}\right)$$

$$\cos(a) = \frac{1-t^2}{1+t^2} \quad \sin(a) = \frac{2t}{1+t^2} \quad \tan(a) = \frac{2t}{1-t^2}$$

5 : Résoudre acos(x) + bsin(x)=c

ullet on commence par factoriser par $\sqrt{a^2+b^2}$ pour transformer l'équation sous la forme suivante:

$$rac{a}{\sqrt{a^2+b^2}} \cos(x) + rac{b}{\sqrt{a^2+b^2}} \sin(x) = rac{c}{\sqrt{a^2+b^2}}.$$

ullet on cherche un réel heta tel que

$$\begin{cases} \cos(\theta) &= \frac{a}{\sqrt{a^2+b^2}} \\ \sin(\theta) &= \frac{b}{\sqrt{a^2+b^2}} \end{cases}$$

L'équation devient donc

$$\cos(heta)\cos(x)+\sin(heta)\sin(x)=rac{c}{\sqrt{a^2+b^2}}.$$

on utilise une formule de trigonométrie pour transformer cette équation en

$$\cos(x- heta)=rac{c}{\sqrt{a^2+b^2}},$$

éguation que l'on sait résoudre par ailleurs