Professeur	Bahloul Khalid (+212) 622-17-65-52
Chapitre	Limites et continuité (l'essentiel du cours + applications)
Niveaux	Bac français / 1 ^{ère} et 2 ^{ème} Bac International SM

Limites et Continuité

I)LIMITE D'UNE FONCTION EN UN POINT

1-Rappels

P et Q deux fonction polynôme $x_0 \in \mathbb{R}$ $a \in \mathbb{R}^*$

$$1)\lim_{x\to x_0} P(x) = P(x_0)$$

2)
$$\lim_{x \to x_0} \frac{P(x)}{Q(x)} = \frac{P(x_0)}{Q(x_0)}$$
 si $Q(x_0) \neq 0$

3)
$$\lim_{x \to x_0} \sin x = \sin x_0$$
 4) $\lim_{x \to x_0} \cos x = \cos x_0$

5)
$$\lim_{x \to x_0} \tan x = \tan x_0$$
 Si $x_0 \neq \frac{\pi}{2} + k\pi$ $k \in \mathbb{Z}$

5)
$$\lim_{x \to x_0} \sqrt{x} = \sqrt{x_0}$$
 si $x_0 \ge 0$

6)
$$\lim_{x \to 0} \frac{\sin x}{x} = 1$$
 7) $\lim_{x \to 0} \frac{\tan x}{x} = 1$

8)
$$\lim_{x \to 0} \frac{\sin ax}{ax} = 1$$
 9) $\lim_{x \to 0} \frac{\tan ax}{ax} = 1$

10)
$$\lim_{x\to 0} \frac{1-\cos x}{x^2} = \frac{1}{2}$$

2) Exercices (Révision et mise à niveau)

Exercice1 : Déterminer les limites suivantes :

1)
$$\lim_{x \to 1} \frac{\sqrt{x^2 + 3} + 1}{2x - 1}$$

2)
$$\lim_{x \to +\infty} 2x^3 + x^2 - x + 4$$

3)
$$\lim_{x \to +\infty} \frac{2x + 5x^2 - 7x^4}{x - 10x^2 + 14x^3}$$
 4) $\lim_{x \to -\infty} \frac{3x + 8x^2 - 2x^5}{x^2 + 2x^6}$

4)
$$\lim_{x \to -\infty} \frac{3x + 8x^2 - 2x^3}{x^2 + 2x^6}$$

5)
$$\lim_{x \to +\infty} \sqrt{x^2 + x} - x$$
 6) $\lim_{x \to \frac{\pi}{4}} \frac{\tan x - 1}{x - \frac{\pi}{4}}$

6)
$$\lim_{x \to \frac{\pi}{4}} \frac{\tan x - 1}{x - \frac{\pi}{4}}$$

Solutions :1) $\lim_{x\to 1} \frac{\sqrt{x^2+3}+1}{2x-1} = \frac{3}{1} = 3$

2)
$$\lim_{x \to +\infty} 2x^3 + x^2 - x + 4 = \lim_{x \to +\infty} 2x^3 = +\infty$$

3)
$$\lim_{x \to +\infty} \frac{2x + 5x^2 - 7x^4}{x - 10x^2 + 14x^3} = \lim_{x \to +\infty} \frac{-7x^4}{14x^3} = \lim_{x \to +\infty} \frac{-x}{2} = -\infty$$

4)
$$\lim_{x \to \infty} \frac{3x + 8x^2 - 2x^5}{x^2 + 2x^6} = \lim_{x \to \infty} \frac{-2x^5}{2x^6} = \lim_{x \to \infty} -\frac{1}{x} = 0$$

5)
$$\lim_{x \to \infty} \sqrt{x^2 + x} - x$$
 ?

On a:
$$\lim_{x \to +\infty} x^2 + x = +\infty$$
 donc: $\lim_{x \to +\infty} \sqrt{x^2 + x} = +\infty$

Et
$$\lim_{x \to +\infty} -x = -\infty$$

on trouve une formes indéterminée : "+ ∞ - ∞

$$\lim_{x \to +\infty} \sqrt{x^2 + x} - x = \lim_{x \to +\infty} \frac{\left(\sqrt{x^2 + x} - x\right)\left(\sqrt{x^2 + x} + x\right)}{\left(\sqrt{x^2 + x} + x\right)}$$

$$\lim_{x \to +\infty} \sqrt{x^2 + x} - x = \lim_{x \to +\infty} \frac{x^2 + x - x^2}{\sqrt{x^2 + x} + x} = \lim_{x \to +\infty} \frac{x}{\sqrt{x^2 \left(1 + \frac{1}{x}\right)} + x}$$

$$= \lim_{x \to +\infty} \frac{x}{|x| \sqrt{\left(1 + \frac{1}{x}\right) + x}} \text{ or } x \to +\infty \text{ donc } |x| = x$$

Professeur	Bahloul Khalid (+212) 622-17-65-52
Chapitre	Limites et continuité (l'essentiel du cours + applications)
Niveaux	Bac français / 1 ^{ère} et 2 ^{ème} Bac International SM

$$= \lim_{x \to +\infty} \frac{x}{x \left(\sqrt{\left(1 + \frac{1}{x} \right) + 1} \right)} = \lim_{x \to +\infty} \frac{1}{\sqrt{\left(1 + \frac{1}{x} \right) + 1}} = \frac{1}{2}$$
6) $\lim_{x \to \frac{\pi}{4}} \frac{\tan x - 1}{x - \frac{\pi}{4}}$ On pose $x - \frac{\pi}{4} = h$

$$\operatorname{donc} \quad x \to \frac{\pi}{4} \Leftrightarrow h \to 0$$

$$\lim_{x \to \frac{\pi}{4}} \frac{\tan x - 1}{x - \frac{\pi}{4}} = \lim_{h \to 0} \frac{\tan \left(h + \frac{\pi}{4} \right)}{h}$$
or: $\tan \left(h + \frac{\pi}{4} \right) = \frac{\tan h + \tan \frac{\pi}{4}}{1 - \tan h \times \tan \frac{\pi}{4}} = \frac{\tan h + 1}{1 - \tan h}$

$$\lim_{x \to \frac{\pi}{4}} \frac{\tan x - 1}{x - \frac{\pi}{4}} = \lim_{h \to 0} \frac{2}{1 - \tan h} \times \frac{\tan h}{h} = \frac{2}{1} \times 1 = 2$$

Exercice2: (Limites à droite et à gauche)

Soit la fonction
$$f: x \mapsto \frac{(x+1)^2}{|x^2-1|}$$

Etudier la limite de f en $x_0 = -1$

Solution: Déterminons $\lim_{\substack{x \to -1 \\ x \succ -1}} f(x)$ et $\lim_{\substack{x \to -1 \\ x \prec -1}} f(x)$?

 $\forall x \in \mathbb{R} - \{-1, 1\}$

Si:
$$-1 < x < 1$$
: $f(x) = \frac{(x+1)^2}{|x+1||x-1|} = -\frac{x+1}{x-1}$

Donc:
$$\lim_{\substack{x \to -1 \\ x_0 \to 1}} f(x) = \lim_{\substack{x \to -1 \\ x_0 \to 1}} -\frac{x+1}{x-1} = 0$$

Si:
$$x < -1$$
: $f(x) = \frac{(x+1)^2}{|x+1||x-1|} = \frac{x+1}{x-1}$

Donc:
$$\lim_{\substack{x \to -1 \\ x < -1}} f(x) = \lim_{\substack{x \to -1 \\ x < -1}} \frac{x+1}{x-1} = 0$$

donc:
$$\lim_{\substack{x \to -1 \\ x \succ -1}} f(x) = \lim_{\substack{x \to -1 \\ x \leftarrow 1}} f(x) = 0$$
 donc: $\lim_{x \to -1} f(x) = 0$

Professeur	Bahloul Khalid (+212) 622-17-65-52	
Chapitre	Limites et continuité (l'essentiel du cours + applications)	
Niveaux	Bac français / 1 ^{ère} et 2 ^{ème} Bac International SM	

Exercice3: Soient les fonctions tels que :

$$f(x) = \sqrt{2x+1}(-3x^2+x)$$
 et $g(x) = \frac{-2x^2+1}{(x-3)^2}(\sqrt{x}+1)$

$$k(x) = \frac{-3x+1}{x(x-2)}$$
 et $h(x) = \frac{x^2+1}{x^3} \sin x$

1)Déterminer :
$$\lim_{x\to 2} f(x)$$
 et $\lim_{x\to +\infty} f(x)$

2)Déterminer :
$$\lim_{x \to +\infty} g(x)$$
 et $\lim_{x \to 3} g(x)$

3)Déterminer :
$$\lim_{x \to 0} h(x)$$

4)Déterminer les limites aux bornes du domaine de définition de k

Solution:

1)Déterminer :
$$\lim_{x\to 2} f(x)$$
 et $f(x) = \sqrt{2x+1}(-3x^2+x)$

$$\lim_{x\to 2} 2x + 1 = 5$$
 et $\lim_{x\to 2} -3x^2 + x = -10$

Donc:
$$\lim_{x\to 2} f(x) = \sqrt{5} \times (-10) = -10\sqrt{5}$$

$$\lim_{x \to +\infty} 2x + 1 = \lim_{x \to +\infty} 2x = +\infty$$

Donc:
$$\lim_{x \to +\infty} \sqrt{2x+1} = +\infty$$

Et on a :
$$\lim_{x \to \infty} -3x^2 + x = \lim_{x \to \infty} -3x^2 = -\infty$$

Donc:
$$\lim_{x\to+\infty} f(x) = -\infty$$

3)
$$\lim_{x\to 0} h(x)$$
 ?.

$$\lim_{x \to 0} h(x) = \lim_{x \to 0} \frac{x^2 + 1}{x^2} \frac{\sin x}{x}$$

Or
$$\lim_{x\to 0} \frac{\sin x}{x} = 1$$
 et puisque : $\lim_{x\to 0} x^2 + 1 = 1$ et

$$\lim_{x\to 0} x^2 = 0^+$$

et
$$\lim_{x\to 0} \frac{x^2+1}{x^2} = +\infty$$
 alors : $\lim_{x\to 0} h(x) = +\infty$

4)
$$k(x) = \frac{-3x+1}{x(x-2)}$$
 donc : $D_k =]-\infty; 0[\cup]0; 2[\cup]2; +\infty[$

• 2)
$$\lim_{x \to +\infty} g(x)$$
 ? et $g(x) = \frac{-2x^2 + 1}{(x-3)^2} (\sqrt{x} + 1)$

On a :
$$\lim_{x \to +\infty} \sqrt{x} = +\infty$$
 donc : $\lim_{x \to +\infty} \sqrt{x} + 1 = +\infty$

Et
$$\lim_{x \to +\infty} \frac{-2x^2 + 1}{(x-3)^2} = \lim_{x \to +\infty} \frac{-2x^2}{x^2} = -2$$
 donc: $\lim_{x \to +\infty} g(x) = -\infty$

• 2)
$$\lim_{x \to 3} g(x)$$
 ? et $g(x) = \frac{-2x^2 + 1}{(x-3)^2} (\sqrt{x} + 1)$

$$\lim_{x\to 3} \sqrt{x} + 1 = \sqrt{3} + 1$$
 et $\lim_{x\to 3} -2x^2 + 1 = -17$ et

$$\lim_{x \to 3} (x-3)^2 = 0^+ \text{ donc} : \lim_{x \to 3} g(x) = -\infty$$

•
$$\lim_{x \to +\infty} k(x) = \lim_{x \to +\infty} \frac{-3x+1}{x^2 - 2x} = \lim_{x \to +\infty} \frac{-3x}{x^2} = \lim_{x \to +\infty} \frac{-3}{x} = 0$$

•
$$\lim_{x \to -\infty} k(x) = \lim_{x \to -\infty} \frac{-3x+1}{x^2 - 2x} = \lim_{x \to -\infty} \frac{-3x}{x^2} = \lim_{x \to -\infty} \frac{-3}{x} = 0$$

•
$$\lim_{x\to 0} -3x + 1 = 1$$
 et $\lim_{x\to 0} x^2 - 2x = 0$

Etude du signe de : $x^2 - 2x$

x	$-\infty$	0	2	$+\infty$
x(x-2)	+	þ	- þ	+

Donc:
$$\lim_{x\to 0^+} x^2 - 2x = 0^-$$
 et $\lim_{x\to 0^-} x^2 - 2x = 0^+$

Donc:
$$\lim_{x\to 0^+} k(x) = -\infty$$
 et $\lim_{x\to 0^-} k(x) = +\infty$

$$\lim_{x \to 2} -3x + 1 = -5 \text{ et } \lim_{x \to 2^+} x^2 - 2x = 0^+ \text{ et } \lim_{x \to 2^-} x^2 - 2x = 0^-$$

Donc:
$$\lim_{x\to 2^+} k(x) = -\infty$$
 et $\lim_{x\to 2^-} k(x) = +\infty$

Professeur	Bahloul Khalid (+212) 622-17-65-52
Chapitre	Limites et continuité (l'essentiel du cours + applications)
Niveaux	Bac français / 1 ^{ère} et 2 ^{ème} Bac International SM

II) CONTINUITE D'UNE FONCTION EN UN POINT

Définition: Soit f une fonction définie sur un intervalle de centre a. On dit que la fonction f est continue en a si elle admet une limite finie en a et $\lim_{x\to a} f(x) = f(a)$

Exemple

$$f(x) = \frac{x^2 + x - 12}{x - 3}$$
; si $x \ne 3$ et $f(3) = 7$

Etudier la est continuité de f en $x_0 = 3$

Solution: on a:
$$f(x) = \frac{x^2 + x - 12}{x - 3} = x + 4$$
 D.EC

$$\lim_{x \to 3} f(x) = \lim_{x \to 3} x + 4 = 7 = f(3)$$

Alors:
$$\lim_{x \to 3} f(x) = f(3)$$

Donc: f est continue en $x_0 = 3$

Exercice 4

$$f(x) = \frac{\sqrt{x+1}-1}{\tan x}$$
; si $x \neq 0$ et $f(0) = \frac{1}{2}$

Etudier la est continuité de f en $x_0 = 0$

Solution:

$$\lim_{x \to 0} f(x) = \lim_{x \to 0} \frac{\sqrt{x+1} - 1}{\tan x} = \lim_{x \to 0} \frac{\left(\sqrt{x+1} - 1\right)\left(\sqrt{x+1} + 1\right)}{\left(\sqrt{x+1} + 1\right)\tan x}$$

$$= \lim_{x \to 0} \frac{x}{\tan x} \times \frac{1}{\sqrt{x+1}+1} = 1 \times \frac{1}{2} = f(0)$$

Alors:
$$\lim_{x\to 0} f(x) = f(0)$$

Donc: f est continue en $x_0 = 0$

Exercice

$$f(x) = \frac{\sin(x-2)}{x^2-2x}$$
; si $x \neq 0$ et $x \neq 2$ et $f(2) = \frac{1}{2}$

Professeur	Bahloul Khalid (+212) 622-17-65-52
Chapitre	Limites et continuité (l'essentiel du cours + applications)
Niveaux	Bac français / 1 ^{ère} et 2 ^{ème} Bac International SM

Etudier la est continuité de f en $x_0 = 2$

Solution:
$$\lim_{x\to 2} f(x) = \lim_{x\to 2} \frac{1}{x} \frac{\sin(x-2)}{x-2} = \frac{1}{2} = f(2)$$
 Alors

$$\lim_{x\to 2} f(x) = f(2)$$
 Donc : f est continue en $x_0 = 2$

Exercice

$$\begin{cases} f(x) = \frac{\sin(\pi x)}{x - 1}; si...x \neq 1 \\ f(1) = m \end{cases}$$

avec m paramètre réel

déterminer la valeur du réel m pour laquelle

f est continue en $x_0 = 1$

Indication = " changement de variable "

Solution:
$$\lim_{x \to 1} f(x) = \lim_{x \to 1} \frac{\sin(\pi x)}{x - 1}$$

on pose :
$$h = x - 1$$
 $x \to 1 \Leftrightarrow h \to 0$

$$\lim_{x \to 1} f(x) = \lim_{h \to 0} \frac{\sin(\pi(h+1))}{h} = \lim_{h \to 0} \frac{\sin(\pi h + \pi)}{h}$$

$$=\lim_{h\to 0}\frac{-\sin(\pi h)}{\pi h}\pi=-\pi$$

donc f est continue en $x_0 = 1$ ssi $m = -\pi$

Exercice

$$f(x) = 2 + x^2 \sin\left(\frac{1}{x}\right)$$
; $si \ x \neq 0 \text{ et } f(0) = 2$

Etudier la est continuité de f en $x_0 = 0$

Solution:
$$x \in \mathbb{R}^* \left| \sin \left(\frac{1}{x} \right) \right| \le 1$$
 donc:

$$|f(x)-2| = x^2 \sin\left(\frac{1}{x}\right) \le x^2$$
 et on a $\lim_{x\to 0} x^2 = 0$

Alors:
$$\lim_{x\to 0} f(x) = 2 = f(0)$$

Professeur	Bahloul Khalid (+212) 622-17-65-52
Chapitre	Limites et continuité (l'essentiel du cours + applications)
Niveaux	Bac français / 1 ^{ère} et 2 ^{ème} Bac International SM

Définition

1) Soit f une fonction définie sur un intervalle de la forme [a, a + r] où r > 0On dit que la fonction f est continue à droite de a si elle admet une limite finie à droite en a

et
$$\lim_{x\to a^+} f(x) = f(a)$$

2) Soit f une fonction définie sur un intervalle de la forme [a-r;a] où r > 0On dit que la fonction f est continue à gauche de a si elle admet une limite finie à gauche en a

et
$$\lim_{x \to a^-} f(x) = f(a)$$

Exemple : Soit f définie par :

$$\begin{cases} f(x) = 3 - x^2; si...x \le 0 \\ f(x) = \frac{x^2 - 3}{2x - 1}; si...x \ge 0 \end{cases}$$

Etudier la est continuité de f à droite et à gauche de $x_0 = 0$

Solution:
$$\lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} \frac{x^2 - 3}{2x - 1} = 3 = f(0)$$

donc f est continue à droite de $x_0 = 0$

$$\lim_{x \to 0^{-}} f(x) = \lim_{x \to 0^{-}} 3 - x^{2} = 3 = f(0)$$

donc f est continue à gauche de $x_0 = 0$

Théorème: Une fonction est continue en un point a si et seulement si elle est continue à droite et à gauche de a

Donc: f est continue en $x_0 = 0$ ssi

$$\lim_{x \to a^{-}} f(x) = \lim_{x \to a^{+}} f(x) = f(a)$$

Professeur	Bahloul Khalid (+212) 622-17-65-52
Chapitre	Limites et continuité (l'essentiel du cours + applications)
Niveaux	Bac français / 1 ^{ère} et 2 ^{ème} Bac International SM

Exemple1: Considérons la fonction f définie

Par:
$$\begin{cases} f(x) = \frac{2x+1}{7-3x}; si...x \le 2 \\ f(x) = \frac{x^2+x-6}{x-2}; si...x \ge 2 \end{cases}$$

Etudier la est continuité de f en $x_0 = 2$

Solution: on a: $f(2) = \frac{2 \times 2 + 1}{7 - 3 \times 2} = \frac{5}{7 - 3 \times 2} = 5$

$$\lim_{x \to 2^+} f(x) = \lim_{x \to 2^+} \frac{x^2 + x - 6}{x - 2} = \lim_{x \to 2^+} \frac{(x - 2)(x + 3)}{x - 2}$$

$$\lim_{x \to 2^{+}} f(x) = \lim_{x \to 2^{+}} x + 3 = 5 = f(2)$$

Donc f est continue adroite de f en $x_0 = 2$

$$\lim_{x \to 2^{-}} f(x) = \lim_{x \to 2^{-}} \frac{2x+1}{7-3x} = \frac{5}{1} = 5 = f(2)$$

Donc f est continue gauche en $x_0 = 2$

Donc f est continue en $x_0 = 2$

Exemple2: Soit la fonction $f: x \mapsto \frac{x^2 - 1}{|x - 1|}$ si $x \ne 1$

Et:
$$f(1) = 2$$

Etudier la la continuité de f en $x_0 = 1$

Solution: $\forall x \in \mathbb{R} - \{1\}$

$$\lim_{\substack{x \to 1 \\ x \to 1}} f(x) = \lim_{\substack{x \to 1 \\ x \to 1}} \frac{x^2 - 1}{x - 1} = \lim_{\substack{x \to 1 \\ x \to 1}} x + 1 = 2 = f(1)$$

donc f est continue à droite de $x_0 = 1$

$$\lim_{\substack{x \to 1 \\ x < 1}} f(x) = \lim_{\substack{x \to 1 \\ x < 1}} -\frac{x^2 - 1}{x - 1} = \lim_{\substack{x \to 1 \\ x > 1}} -(x + 1) = -2 \neq f(1)$$

donc f n'est pas continue à gauche de $x_0 = 1$ donc f n'est pas continue en $x_0 = 1$

On 2dit que f est discontinue en $x_0 = 1$

Professeur	Bahloul Khalid (+212) 622-17-65-52	
Chapitre	Limites et continuité (l'essentiel du cours + applications)	
Niveaux	Bac français / 1 ^{ère} et 2 ^{ème} Bac International SM	

Prolongement par continuité

Théorème et définition : Soit f une fonction dont l'ensemble de définition est D_f ; a un réel

tel que
$$a \notin D_f$$
 et $\lim_{x \to a} f(x) = l$ (finie)

La fonction
$$f$$
 définie par :
$$\begin{cases} f(x) = f(x); si...x \neq a \\ f(a) = l \end{cases}$$

Est une fonction continue en a et s'appelle un prolongement par continuité de la fonction f en a

Exemple : Soit f une fonction définie par

$$f(x) = \frac{1 - \cos x}{x}$$
 Donner un prolongement par

continuité de la fonction f en $x_0 = 0$

Solution:
$$\lim_{x \to 0} f(x) = \lim_{x \to 0} \frac{1 - \cos x}{x} = \lim_{x \to 0} \frac{1 - \cos x}{x^2} \times x = 0$$

Car:
$$\lim_{x\to 0} \frac{1-\cos x}{x^2} = \frac{1}{2}$$

Donc La fonction f définie par :

$$\begin{cases} f(x) = f(x); si...x \neq 0 \\ f(0) = 0 \end{cases}$$

Est une prolongement par continuité de la fonction f en $x_0 = 0$

III) OPERATIONS SUR LES FONCTIONS CONTINUES.

f une fonction D_f son domaine de définition soit a, b un intervalle inclus dans a

Définition

- 1) On dit que f est continue sur l'ouvert] a, b [si elle est continue en tout point de]a, b[
- 2) On dit que f est continue sur [a, b[si elle est continue sur]a, b[et à droite de a
- 3) On dit que f est continue sur [a, b] si elle est continue sur [a, b[, à droite de a et à gauche de b

Professeur	Bahloul Khalid (+212) 622-17-65-52	
Chapitre	Limites et continuité (l'essentiel du cours + applications)	
Niveaux	Bac français / 1 ^{ère} et 2 ^{ème} Bac International SM	

Propriétés :1)Si f et g sont deux fonctions continues en a alors :

a)
$$f + g$$
 b) $f \times g$ c) $|f|$

Sont des fonctions continues en a

- 2)Si f et g sont deux fonctions continues en a et $g(a) \neq 0$ alors
- a) $\frac{1}{g}$ b) $\frac{f}{g}$ sont des fonctions continues en a.
- 3) Si f une fonction continue en a et $f(a) \ge 0$ alors : \sqrt{f} est continue en a

Propriétés :1) Tout fonction polynôme est continue sur \mathbb{R}

- 2) Les fonctions sin et cos sont continue sur $\mathbb R$
- 3) La fonction tan est continue sur tous le intervalles de la forme :]- $\pi/2+k\pi$; $\pi/2+k\pi$ [(où $k\in\mathbb{Z}$)

Continuité de la composition de deux fonctions

Théorème: Soient f une fonction définie sur un intervalle I et g une fonction définie sur un intervalle J tels que $f(I) \subset J$ et x_0 un élément de I.

- 1) Si f est continue en x_0 et g continue en $f(x_0)$ alors $g \circ f$ est continue en x_0 .
- 2) Si f est continue I et g continue en f(I) alors $g \circ f$ est continue I.

Exemples

1) Soit f une fonction définie par $f(x) = \cos(2x^2 - 3x + 4)$ Montrons que f est continue sur \mathbb{R}

Puisque les fonctions : $f_1: x \to 2x^2 - 3x + 4$ et $f_2: x \to \cos x$ sont continues sur $\mathbb R$ Et $f_1(\mathbb R) \subset \mathbb R$ alors : $f = f_2 \circ f_1$ est continue sur $\mathbb R$

Professeur	Bahloul Khalid (+212) 622-17-65-52	
Chapitre	Limites et continuité (l'essentiel du cours + applications)	
Niveaux	Bac français / 1 ^{ère} et 2 ^{ème} Bac International SM	

2) Soit g une fonction définie par

$$g(x) = \sqrt{\frac{x}{1 + \sin^2 x}}$$

Montrons que g est continue sur R+

On a : $D_g = [0; +\infty[$ et Puisque la fonction :

$$g_1: x \to \frac{x}{1+\sin^2 x}$$
 est continue sur \mathbb{R}^+ et

$$g_1(\mathbb{R}^+) = \mathbb{R}^+$$
 et $g_2: x \to \sqrt{x}$ sont continue sur \mathbb{R}^+

Donc : $g = g_2 \circ g_1$ est continue sur \mathbb{R}^+

Limites des fonctions composées

Théorème: Soit u une fonction définie sur un intervalle pointé de centre x_0 telle $\lim_{x \to x_0} u(x) = l$

si v est continue en l alors $\lim_{x\to x_0} (v \circ u)(x) = v(l)$

Exemples : Déterminer les limites suivantes :

$$1) \lim_{x \to 0} \sin \left(\frac{1 - \cos x}{x^2} \pi \right)$$

$$2)\lim_{x\to+\infty}\cos\left(\pi\sqrt{\frac{x-1}{x+1}}\right)$$

Solution :1)

Soient:
$$f:x \to \frac{1-\cos x}{x^2}\pi$$
 et $g:x \to \sin x$

Puisque :
$$\lim_{x\to 0} \frac{1-\cos x}{x^2} \pi = \frac{\pi}{2}$$
 g est continue sur \mathbb{R}

Donc continue en $x_0 = \frac{\pi}{2}$ donc :

$$\lim_{x \to 0} \sin\left(\frac{1 - \cos x}{x^2}\pi\right) = \sin\left(\frac{\pi}{2}\right) = 1$$

2) puisque :
$$\lim_{x \to +\infty} \pi \sqrt{\frac{1 - \frac{1}{x}}{1 - \frac{1}{x}}} = \pi$$

Et la fonction :
$$x \rightarrow \cos x$$
 continue en π

donc:
$$\lim_{x \to +\infty} \cos \left(\pi \sqrt{\frac{x-1}{x+1}} \right) = \cos \pi = -1$$

Professeur	Bahloul Khalid (+212) 622-17-65-52
Chapitre	Limites et continuité (l'essentiel du cours + applications)
Niveaux	Bac français / 1 ^{ère} et 2 ^{ème} Bac International SM

Exercice

Déterminer les limites suivantes

$$1)\lim_{x\to 0}\cos\left(\frac{\pi\tan x}{3x}\right)$$

1)
$$\lim_{x \to 0} \cos\left(\frac{\pi \tan x}{3x}\right)$$
 2) $\lim_{x \to +\infty} \sin\left(\frac{\pi x^2 - 4x + 3}{4x^2 + 7}\right)$

$$3) \lim_{x \to 0} \sin \sqrt{\frac{2x^2}{1 - \cos x}}$$

Solution :1)
$$\lim_{x \to 0} \frac{\pi \tan x}{3x} = \lim_{x \to 0} \frac{\pi}{3} \frac{\tan x}{x} = \frac{\pi}{3}$$

et Puisque : $x \to \cos x$ est continue sur \mathbb{R}

Donc continue en $x_0 = \frac{\pi}{3}$ donc :

$$\lim_{x \to 0} \cos\left(\frac{\pi \tan x}{3x}\right) = \cos\left(\frac{\pi}{3}\right) = \frac{1}{2}$$

2)
$$\lim_{x \to +\infty} \frac{\pi x^2 - 4x + 3}{4x^2 + 7} = \lim_{x \to +\infty} \frac{\pi x^2}{4x^2} = \frac{\pi}{4}$$

Donc continue en $x_0 = \frac{\pi}{4}$ donc :

donc:
$$\lim_{x \to +\infty} \sin\left(\frac{\pi x^2 - 4x + 3}{4x^2 + 7}\right) = \sin\frac{\pi}{4} = \frac{\sqrt{2}}{2}$$

3) on a :
$$\lim_{x\to 0} \frac{1-\cos x}{x^2} = \frac{1}{0} \operatorname{donc} : \lim_{x\to 0} 2 \frac{x^2}{1-\cos x} = 4$$

donc:
$$\lim_{x\to 0} \sqrt{\frac{2x^2}{1-\cos x}} = 2: x \to \sqrt{x}$$
 est continue en 4

donc:
$$\lim_{x\to 0} \sin \sqrt{\frac{2x^2}{1-\cos x}} = \sin 2 \operatorname{car}: x \to \sin x \operatorname{est}$$

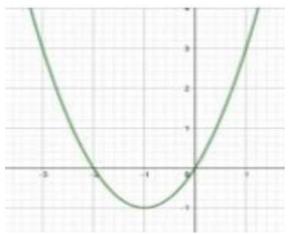
continue en 2

IV) IMAGE D'UN INTERVALLE PAR UNE **FONCTION CONTINUE**

1) Image d'un segment (intervalle fermé) :

Activité :Le graphe ci-contre est le graphe de la

fonction
$$f(x) = x^2 + 2x$$



Professeur	Bahloul Khalid (+212) 622-17-65-52
Chapitre	Limites et continuité (l'essentiel du cours + applications)
Niveaux	Bac français / 1 ^{ère} et 2 ^{ème} Bac International SM

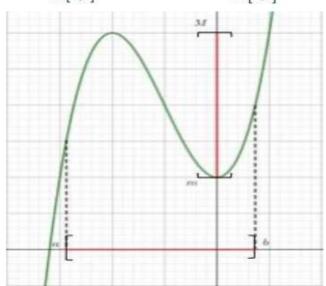
Déterminer graphiquement les images des

intervalles : I_1 = [0,1] , I_2 = [-3,-1] ; I_3 = [-3,1]

Théorème : (Admis)

L'image d'un segment [a, b] par une fonction continue est le segment [m, M] où :

$$m = \min_{x \in [a;b]} f(x) \text{ et } M = \max_{x \in [a;b]} f(x)$$



Cas particulier :

- 1) Si f est continue croissante sur [a, b] alors f([a, b]) = [f(a), f(b)]
- 2) Si f est continue décroissante sur [a, b] alors f([a, b]) = [f(b), f(a)]

2) Image d'un intervalle

Théorème général

Théorème (admis) : L'image d'un intervalle par une fonction continue est un intervalle.

Cas d'une fonction strictement monotone

Professeur	Bahloul Khalid (+212) 622-17-65-52
Chapitre	Limites et continuité (l'essentiel du cours + applications)
Niveaux	Bac français / 1 ^{ère} et 2 ^{ème} Bac International SM

1) f continue et strictement croissante sur

L'intervalle
$$I$$
 et $a \in I$ et $b \in I$

$$f([a;b]) = [f(a);f(b)]$$
 et $f([a;b]) = \left| f(a); \lim_{\substack{x \to b \\ x < b}} f(x) \right|$

$$f(]a;b]) = \lim_{\substack{x \to a \\ x \to a}} f(x); f(b)$$
 et
$$f(]a;b[) = \lim_{\substack{x \to a \\ x \to a}} f(x); \lim_{\substack{x \to b \\ x \to b}} f(x)$$

2) f continue et strictement décroissante sur L'intervalle I et $a \in I$ et $b \in I$

$$f([a;b]) = [f(b);f(a)]$$
 et $f([a;b]) = \lim_{\substack{x \to b \ x < b}} f(x);f(a)$

$$f(]a;b]) = \left[f(b); \lim_{\substack{x \to a \\ x \sim a}} f(x) \right] = \left[\lim_{\substack{x \to b \\ x \prec b}} f(x); \lim_{\substack{x \to a \\ x \sim a}} f(x) \right]$$

Exemple: Soit f une fonction définie par

$$f(x) = \frac{2x-3}{x+1}$$

Déterminer les images des intervalles suivants :

$$[0,1]$$
; $[-2,-1[$; $]-1,1]$; $[2,+\infty[$

Solution :
$$D_f =]-\infty; -1[\ \cup\]-1; +\infty[$$

$$\begin{vmatrix} 2 & -3 \\ 1 & 1 \end{vmatrix} = 2 + 3 = 5 \succ 0 \text{ donc} : \mathbf{f} \text{ continue et}$$

strictement croissante sur les intervalles]– ∞ ; –1[

et]-1; +
$$\infty$$
[donc on a : $f([0;1]) = [f(0); f(1)] = [-3; \frac{-1}{2}]$ $f([2; +\infty[) = [f(2); \lim_{x \to \infty} f(x)] = [\frac{1}{3}; 2]$

$$f([-2;-1]) = \left| f(-2); \lim_{\substack{x \to -1 \\ x < -1}} f(x) \right| = [7;+\infty[$$

$$f(]-1;1]) = \left| \lim_{\substack{x \to -1 \\ x \sim -1}} f(x); f(1) \right| = \left] -\infty; \frac{-1}{2} \right]$$

$$f([2;+\infty[)=[f(2);\lim_{x\to+\infty}f(x)]=[\frac{1}{3};2[$$

Professeur	Bahloul Khalid (+212) 622-17-65-52
Chapitre	Limites et continuité (l'essentiel du cours + applications)
Niveaux	Bac français / 1 ^{ère} et 2 ^{ème} Bac International SM

V) THEOREME DES VALEURS INTERMEDIERES 1) Cas général

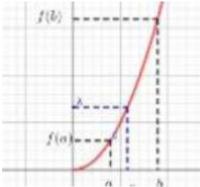
Théorème T.V.I: Soit f une fonction continue sur [a, b]. Pour tout λ compris entre f(a) et f(b) il existe au moins un $c \in [a, b]$ tel que $f(c) = \lambda$

2) Cas f strictement monotone.

Théorème T.V.I (cas f strictement monotone)

Soit f une fonction continue strictement monotone sur [a, b].

Pour tout λ comprise ntre f(a) et f(b) il existe un et un seul $c \in [a, b]$ tel que $f(c) = \lambda$



3) Corolaires

Corolaire1 (T.V.I) :Soit f une fonction continue sur [a, b] .Si $f(a) \times f(b) < 0$ il existe au moins un $c \in [a, b]$ tel que f(c) = 0

Corolaire2 (T.V.I):

Soit f une fonction continue strictement monotone sur [a, b] .Si $f(a) \times f(b) < 0$ il existe ur et un seul c dans [a, b] tel que f(c) = 0

4) Applications

Exemple1: Montrer que l'équation:

$$4x^3 - 3x - \frac{1}{2} = 0$$
 admet une racine dans chacune

$$\text{des intervalles suivants}:\ \left] -1; -\frac{1}{2} \right[;\ \left] -\frac{1}{2}; 0 \right[\text{et } \left] 0; 1 \right[$$

Professeur	Bahloul Khalid (+212) 622-17-65-52
Chapitre	Limites et continuité (l'essentiel du cours + applications)
Niveaux	Bac français / 1 ^{ère} et 2 ^{ème} Bac International SM

Solution: on considère la fonction : g tel que $g(x) = 4x^3 - 3x - \frac{1}{2}$

• On a : g est est continue sur sur \mathbb{R} (car c'est une fonction polynôme) donc continue sur tout intervalle de \mathbb{R}

o Et on a :
$$g(-1) = -\frac{3}{2}$$
 et $g(-\frac{1}{2}) = \frac{1}{2}$ donc : $g(-\frac{1}{2}) \times g(-1) \times 0$ donc : d'après le (T.V.I)

il existe
$$\alpha_1 \in \left[-1; -\frac{1}{2} \right]$$
 tel que : $g(\alpha_1) = 0$

o Et on a : $g(0) = -\frac{1}{2}$ et $g(-\frac{1}{2}) = \frac{1}{2}$ donc :

 $g\left(-\frac{1}{2}\right)\times g\left(0\right)\prec 0$ donc :d'après le (T.V.I)

il existe $\alpha_2 \in \left[-\frac{1}{2}; 0 \right]$ tel que : $g(\alpha_2) = 0$

• Et on a : $g(0) = -\frac{1}{2}$ et $g(1) = \frac{1}{2}$ donc :

 $g(1)\times g(0)\prec 0$ donc :d'après le (T.V.I)

il existe $\alpha_3 \in]0;1[$ tel que : $g(\alpha_3)=0$

donc l'équation : $4x^3 - 3x - \frac{1}{2} = 0$ admet 3 racines

différentes dans chacune des intervalles:

$$\left[-1; -\frac{1}{2}\right]; \left[-\frac{1}{2}; 0\right] \text{ et } \left[0; 1\right[$$

Exemple2 : Montrer que l'équation : $x^3 + x + 1 = 0$

Admet une racine unique dans]-1;0[

Solution: on considère la fonction : f tel que $f(x) = x^3 + x + 1$

- On a : f est est continue sur sur ℝ (car c'est une fonction polynôme) donc continue sur]-1;0[
- on a: f(-1)=-1 et f(0)=1 donc: $f(1)\times f(-1) < 0$
- $f'(x) = 3x^2 + 1 > 0$ sur]-1;0[donc f strictement croissante sur]-1;0[

Donc : d'après le **(T.V.I)** l'équation f(x) = 0 admet une solution unique dans -1,0

Exercice9: Montrer que l'équation : $\cos x = x$

Admet au moins une racine dans intervalle :

$$I = [0; \pi]$$

Solution: $\cos x = x \Leftrightarrow \cos x - x = 0$

On pose: $f(x) = \cos x - x$

- On a : f est est continue sur sur \mathbb{R} (car c'est la différence de deux fonctions continues) donc continue sur $I = [0; \pi]$
- on a: $f(\pi) = -1 \pi < 0$ et f(0) = 1 donc:

 $f(0) \times f(\pi) < 0$

Donc : d'après le (T.V.I)

il existe $\alpha \in]0; \pi[$ tel que : $f(\alpha) = 0$

Professeur	Bahloul Khalid (+212) 622-17-65-52
Chapitre	Limites et continuité (l'essentiel du cours + applications)
Niveaux	Bac français / 1 ^{ère} et 2 ^{ème} Bac International SM

Exercice10: Montrer que l'équation : $1 + \sin x = x$

Admet au moins une racine dans intervalle :

$$I = \left\lceil \frac{\pi}{2}; \frac{2\pi}{3} \right\rceil$$

Solution: $1 + \sin x = x \Leftrightarrow 1 + \sin x - x = 0$

On pose: $f(x) = 1 + \sin x - x$

- On a : f est est continue sur sur \mathbb{R} (car c'est la différence de deux fonctions continues) donc continue sur $I = \left\lceil \frac{\pi}{2}; \frac{2\pi}{3} \right\rceil$
- on a: $f\left(\frac{\pi}{2}\right) = \frac{4-\pi}{2} > 0$ et

$$f\left(\frac{2\pi}{3}\right) = \frac{6+3\sqrt{3}-4\pi}{6} < 0 \text{ donc}: f\left(\frac{\pi}{2}\right) \times f\left(\frac{2\pi}{3}\right) < 0$$

Donc : d'après le (T.V.I)

il existe $\alpha \in \left] \frac{\pi}{2}; \frac{2\pi}{3} \right[\text{ tel que : } f(\alpha) = 0$

VI) FONCTIONS COMPOSEES ET FONCTIONS RECIPROQUES.

1) Le théorème

Théorème: Soit f une fonction définie continue et strictement monotone sur un intervalle I, On a

f admet une fonction réciproque f^{-1} définie de

$$J = f(I)$$
 vers I .

donc f est une bijection de I vers f(I)

D'où f admet une fonction réciproque f^{-1} de

J = f(I) vers I et on a :

$$\begin{cases} f(y) = x \\ y \in I \end{cases} \Leftrightarrow \begin{cases} y = f^{-1}(x) \\ x \in f(I) \end{cases}$$

$$(f \circ f^{-1})(x) = x \quad \forall x \in f(I)$$

$$(f^{-1} \circ f)(y) = y \quad \forall y \in I$$

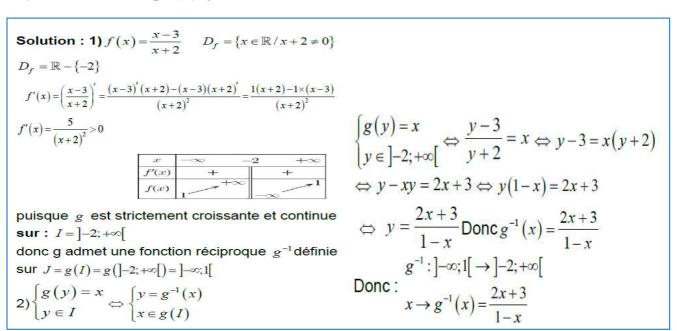
Professeur	Bahloul Khalid (+212) 622-17-65-52
Chapitre	Limites et continuité (l'essentiel du cours + applications)
Niveaux	Bac français / 1 ^{ère} et 2 ^{ème} Bac International SM

2)Application

Exemple1 : Soit f la fonction définie par :

$$f(x) = \frac{x-3}{x+2}$$

- 1) Montrer que la fonction g la restriction de f sur intervalle $I =]-2; +\infty[$ admet une fonction réciproque g^{-1} définie sur un J qu'il faut déterminer.
- 2) Déterminer $g^{-1}(x)$ pour tout x de l'intervalle J



Exercice 12: Soit f la fonction définie sur

$$I = \left[\frac{1}{2}; +\infty\right] \text{ par } : f(x) = \sqrt{2x-1}$$

- Montrer que la fonction f admet une fonction réciproque f⁻¹ définie sur un J qu'il faut déterminer.
- 2) Déterminer $f^{-1}(x)$ pour tout x de l'intervalle J
- 3)Représenter $\left(C_f\right)$ et $\left(C_{f^{-1}}\right)$ dans le même repére orthonormé $\left(o,\vec{i},\vec{j}\right)$

Professeur	Bahloul Khalid (+212) 622-17-65-52
Chapitre	Limites et continuité (l'essentiel du cours + applications)
Niveaux	Bac français / 1 ^{ère} et 2 ^{ème} Bac International SM

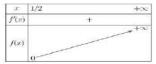
Solution : 1)
$$D_f = \left\lceil \frac{1}{2}; +\infty \right\rceil = I$$

$$\forall x \in \left] \frac{1}{2}; +\infty \left[f'(x) = \left(\sqrt{2x - 1} \right)' = \frac{(2x - 1)'}{2\sqrt{2x - 1}} = \frac{1}{\sqrt{2x - 1}} > 0 \right]$$

$$x \in \left[\frac{1}{2}; +\infty \right] \left[f'(x) = \left(\sqrt{2x - 1} \right)' = \frac{(2x - 1)'}{2\sqrt{2x - 1}} = \frac{1}{\sqrt{2x - 1}} > 0 \right]$$

$$y \in I$$

$$x \in f(I)$$



Donc: f est strictement croissante et continue

$$\mathbf{sur}: \left\lceil \frac{1}{2}; +\infty \right\rceil = I$$

 ${\rm donc}\,\,f\,\,{\rm admet}\,{\rm une}\,{\rm fonction}\,{\rm r\'eciproque}\,\,f^{{\scriptscriptstyle -1}}$

définie sur
$$J = f(I) = f\left(\left[\frac{1}{2}; +\infty\right]\right) = [0; +\infty]$$

2)
$$\begin{cases} f(y) = x \\ y \in I \end{cases} \Leftrightarrow \begin{cases} y = f^{-1}(x) \\ x \in f(I) \end{cases}$$
$$\begin{cases} f(y) = x \\ y \in [0; +\infty[] \end{cases} \Leftrightarrow \sqrt{2y - 1} = x \Leftrightarrow 2y - 1 = x^2$$

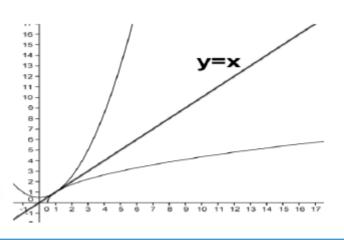
$$\Leftrightarrow 2y = x^2 + 1 \Leftrightarrow y = \frac{x^2 + 1}{2}$$

Donc
$$f^{-1}(x) = \frac{x^2 + 1}{2}$$

Donc:
$$f^{-1}: [0; +\infty[\rightarrow \left[\frac{1}{2}; +\infty\right[$$
$$x \rightarrow f^{-1}(x) = \frac{x^2 + 1}{2}$$

3) $\left(C_{f^{-1}}\right)$ et $\left(C_{f}\right)$ sont symétriques par rapport à

$$(\Delta) y = x$$



3) Propriété de la fonction réciproque

Propriété 1:Si f admet une fonction réciproque f^{-1} de J = f(I) vers I alors f^{-1} à la même monotonie sur J que celle de f sur I.

Preuve :

$$T_{f^{-1}} = \frac{f^{-1}(x_1) - f^{-1}(x_2)}{x_1 - x_2} = \frac{y_1 - y_2}{f(x_1) - f(x_2)}$$
$$T_{f^{-1}} = \frac{1}{\frac{f(x_1) - f(x_2)}{y_1 - y_2}}$$

Donc le taux de f^{-1} sur J à le même signe que le taux de f sur I Et on conclut.

Propriété 2 :Si f admet une fonction réciproque

$$f^{-1}$$
de $J = f(I)$ vers I alors $\left(C_{f^{-1}}\right)$ et $\left(C_{f}\right)$ sont

symétriques par rapport à :(Δ) y = x

4) La fonction racine *n* – é*me*

4.1 Définition et règles de calculs

Soit n un élément de \mathbb{N}^* ; la fonction : $f: x \to x^n$ est une fonction continue strictement

Professeur	Bahloul Khalid (+212) 622-17-65-52
Chapitre	Limites et continuité (l'essentiel du cours + applications)
Niveaux	Bac français / 1 ^{ère} et 2 ^{ème} Bac International SM

croissante sur \mathbb{R}^+ elle admet donc une fonction f^{-1} de $f(\mathbb{R}^+) = \mathbb{R}^+$ vers \mathbb{R}^+ La fonction réciproque f^{-1} s'appelle la fonction racine n - 'eme et se note $\sqrt[n]{}$

1)La fonction $\sqrt[n]{x}$ est définie sur \mathbb{R} +

2)
$$\forall x \in \mathbb{R}^+ \sqrt[n]{x} \ge 0$$

$$3)(\forall x \in \mathbb{R}^+)(\forall y \in \mathbb{R}^+)\sqrt[n]{x} = y \Leftrightarrow x = y^n$$

4)La fonction $\sqrt[n]{x}$ est continue sur \mathbb{R} + strictement croissante.

5)(
$$\forall x \in \mathbb{R}$$
+)($\forall y \in \mathbb{R}$ +) $\sqrt[n]{x} = \sqrt[n]{y} \Leftrightarrow x = y$

6)(
$$\forall x \in \mathbb{R}$$
+) ($\forall a \in \mathbb{R}$ +) $\sqrt[n]{x} \ge a \iff x \ge a^n$

7)(
$$\forall a \in \mathbb{R}+$$
) $\sqrt[n]{x} \le a \Leftrightarrow 0 \le x \le a^n$

8)(
$$\forall x \in \mathbb{R}$$
+) $\left(\sqrt[n]{x}\right)^n = \sqrt[n]{x^n} = x$

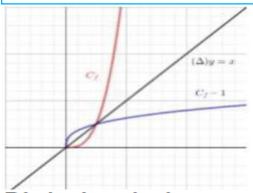
9)(
$$\forall x \in \mathbb{R}^+$$
)($\forall p \in \mathbb{N}$) $(\sqrt[n]{x})^p = \sqrt[n]{x^p}$

10)
$$\lim_{x \to +\infty} \sqrt[n]{x} = +\infty$$

11)Si
$$\lim_{x \to x_0} u(x) = +\infty$$
 alors $\lim_{x \to x_0} \sqrt[n]{u(x)} = +\infty$

12)Si
$$\lim_{x\to x_0} u(x) = l$$
 et $l \ge 0$ alors $\lim_{x\to x_0} \sqrt[n]{u(x)} = \sqrt[n]{l}$

13)La courbe de la fonction ^ŋ√



Règle de calcul

1)
$$(\forall x \in \mathbb{R}^+)(\forall y \in \mathbb{R}^+) \sqrt[n]{x \times y} = \sqrt[n]{x} \times \sqrt[n]{y}$$

2)
$$(\forall x \in \mathbb{R}^+)(\forall y \in \mathbb{R}^{*+}) \sqrt[n]{\frac{x}{y}} = \frac{\sqrt[n]{x}}{\sqrt[n]{y}}$$

3)
$$(\forall x \in \mathbb{R}^+)(\forall n \in \mathbb{N}^*)(\forall p \in \mathbb{N}^*)$$
 $\sqrt[n]{\sqrt[p]{x}} = \sqrt[n \times p]{x}$

4)
$$(\forall x \in \mathbb{R}^+)(\forall n \in \mathbb{N}^*)(\forall p \in \mathbb{N}^*)\sqrt[n]{x} = \sqrt[np]{x^p}$$

4.2 Résolution de l'équation $x^n = a$

Exemples : Résoudre dans \mathbb{R} les équations suivantes :

1)
$$x^5 = 32$$
 2) $x^7 = -128$ 3) $x^4 = 3$ 4) $x^6 = -8$

Solutions :1)
$$x^5 = 32$$
 donc $x > 0$
 $x = \sqrt[5]{32} \Leftrightarrow x = \sqrt[5]{2^5} \Leftrightarrow x = 2$ donc : $S = \{2\}$

2)
$$x^7 = -128$$
 donc $x < 0$

Donc:
$$x = -\sqrt[7]{128} \Leftrightarrow x = -\sqrt[7]{2^7} \Leftrightarrow x = -2$$

Donc :
$$S = \{-2\}$$

3)
$$x^4 = 3 \Leftrightarrow x = \sqrt[4]{3}$$
 ou $x = -\sqrt[4]{3}$

Donc:
$$S = \{-\sqrt[4]{3}; \sqrt[4]{3}\}$$

4)
$$x^6 = -8$$

On a
$$x^6 \ge 0$$
 et $-8 < 0$ donc $S = \Phi$

Professeur	Bahloul Khalid (+212) 622-17-65-52
Chapitre	Limites et continuité (l'essentiel du cours + applications)
Niveaux	Bac français / 1 ^{ère} et 2 ^{ème} Bac International SM

Exercices d'applications Exercice13: simplifier les expressions

1) $(\sqrt[3]{2})^3$ 2) $\sqrt[3]{4/2}$

2)
$$\sqrt[2]{\sqrt[4]{2}}$$

3)
$$A = \sqrt[5]{32} - \left(\sqrt[7]{2}\right)^7 + \sqrt[3]{\frac{\sqrt[5]{512}}{\sqrt[5]{3}}} + \frac{\sqrt[5]{96}}{\sqrt[5]{3}}$$

4)
$$B = \frac{\sqrt[3]{2} \times \sqrt[5]{16} \times \sqrt{\sqrt[3]{4}} \times \sqrt[15]{2}}{\sqrt[15]{256}}$$

Solutions:1)
$$(\sqrt[3]{2})^3 = 2$$
 2) $\sqrt[2]{4/2} = \sqrt[2x4]{2} = \sqrt[8]{2}$

2)
$$A = \sqrt[5]{32} - \left(\sqrt[7]{2}\right)^7 + \sqrt[3]{\sqrt[3]{512}} + \sqrt[5]{\frac{596}{\sqrt[5]{3}}} = \sqrt[5]{2^5} - 2 + \sqrt[3]{\sqrt[3]{2^9}} + \sqrt[4]{\frac{96}{3}}$$

$$A = 2 - 2 + \sqrt[9]{2^9} + \sqrt[5]{32} = 2 - 2 + 2 + 2 = 4$$

$$3)_B = \frac{\sqrt[3]{2} \times \sqrt[5]{16} \times \sqrt[6]{4} \times \sqrt[15]{2}}{\sqrt[15]{256}} = \frac{\sqrt[3]{2} \times \sqrt[5]{2^4} \times \sqrt[6]{2^2} \times \sqrt[15]{2}}{\sqrt[15]{256}}$$

$$A = 2 - 2 + \sqrt[9]{2^9} + \sqrt[5]{32} = 2 - 2 + 2 + 2 = 4$$

$$3)_{B} = \frac{\sqrt[3]{2} \times \sqrt[3]{16} \times \sqrt[9]{4} \times \sqrt[15]{2}}{\sqrt[15]{256}} = \frac{\sqrt[3]{2} \times \sqrt[5]{2^8}}{\sqrt[15]{256}} = \frac{\sqrt[3]{2} \times \sqrt[3]{2^8}}{\sqrt[15]{2^8}} = \frac{\sqrt[3]{2} \times \sqrt[3]{2^8} \times \sqrt[3]{2^8}}{\sqrt[3]{2^8}} = \frac{\sqrt[3]{2} \times \sqrt[3]{2^8}}{\sqrt[3]{2}} = \frac{\sqrt[3]{2} \times \sqrt[3]{2}}{\sqrt[3]{2}} = \frac$$

Exercice14: comparer: $\sqrt[5]{2}$ et $\sqrt[7]{3}$

Solutions: on a: $\sqrt[n \times m]{x^m} = \sqrt[n]{x}$

$$\sqrt[7]{3} = \sqrt[7x5]{3^5} = \sqrt[35]{243}$$
 et $\sqrt[5]{2} = \sqrt[7x5]{2^7} = \sqrt[35]{128}$

On a: $\sqrt[35]{243} > \sqrt[35]{128}$ car 243 > 128

Donc: $\sqrt[7]{3} > \sqrt[5]{2}$

Exercice 15 : résoudre dans \mathbb{R} :

1)
$$\sqrt[5]{3x-4} = 2$$
 2) $(\sqrt[5]{x})^2 - 5\sqrt[5]{x} + 6 = 0$