Professeur	Bahloul Khalid (+212) 622-17-65-52
Chapitre	Suites numériques (l'essentiel du cours + applications)
Niveaux	Bac français / 1 ^{ère} et 2 ^{ème} Bac International SM

Suites numériques

I) Rappels

1) Suites majorées, suites minorées, suites bornées.

Activité : soit $(u_n)_{n\in\mathbb{N}}$ la suite récurrente définie

$$par: \begin{cases} u_0 = 0 \\ u_{n+1} = \sqrt{u_n + 2} \end{cases} \forall n \in \mathbb{N}$$

1- Calculer les 3 premiers termes.

2- Montrer par récurrence que : $\forall n \in \mathbb{N}$: $0 \le u_n$

3- Montrer par récurrence que : $\forall n \in \mathbb{N} : u_n \leq 2$

Solution :1) on a $u_{n+1} = \sqrt{u_n + 2}$

Pour n=0 on a: $u_1 = \sqrt{u_0 + 2}$ donc $u_1 = \sqrt{2}$

Pour n=1 on a: $u_2 = \sqrt{u_1 + 2}$ donc $u_2 = \sqrt{\sqrt{2} + 2}$

Pour n=2 on a: $u_3 = \sqrt{u_2 + 2}$ donc

 $u_3 = \sqrt{\sqrt{\sqrt{2} + 2} + 2}$

3) Montrons par récurrence que : $\forall n \in \mathbb{N}$: $u_n \leq 2$

1étapes : l'initialisation :Pour n=0 nous avons

 $u_0 = 0$ donc $u_0 \le 2$.

Donc la proposition est vraie pour n=0

2étapes : d'hérédité ou Hypothèse de récurrence On dit que la suite $(u_n)_{n\in\mathbb{N}}$ est minorée par 0

Supposons que: $u_n \le 2$

3étapes : Montrons alors que : $u_{n+1} \le 2$??

2) Montrons par récurrence que : $\forall n \in \mathbb{N}$:

 $0 \le u_n$

1étapes : l'initialisation :Pour n=0 nous avons

 $u_0 = 0$ donc $0 \le u_0$.

Donc la proposition est vraie pour n=0

2étapes : d'hérédité ou Hypothèse de récurrence

Supposons que: $0 \le u_n$

3étapes : Montrons alors que : $0 \le u_{n+1}$??

Or on a : $u_{n+1} = \sqrt{u_n + 2} \ge 0$

donc: $\forall n \in \mathbb{N} : 0 \le u_n$

on a: $u_n \le 2$ donc $u_n + 2 \le 4 \Rightarrow \sqrt{u_n + 2} \le \sqrt{4}$

 $\Rightarrow u_{n+1} \leq 2$

donc: $\forall n \in \mathbb{N} : 0 \le u_n$

Par suite : : $\forall n \in \mathbb{N}$: $0 \le u_n \le 2$

On dit que la suite $(u_n)_{n\in\mathbb{N}}$ est majorée par 0

 $car u_n \le 2 \quad \forall n \in \mathbb{N}$

car $0 \le u_n \quad \forall n \in \mathbb{N}$

On dit que la suite $(u_n)_{n\in\mathbb{N}}$ est bornée car :

 $\forall n \in \mathbb{N} : 0 \le u_n \le 2$

Professeur	Bahloul Khalid (+212) 622-17-65-52
Chapitre	Suites numériques (l'essentiel du cours + applications)
Niveaux	Bac français / 1 ^{ère} et 2 ^{ème} Bac International SM

Définition: Soit $(u_n)_{n\in I}$ une suite numérique.

On dit que la suite $\left(u_n^{}\right)_{n\in I}$ est majorée s'il existe un réel M tel que : $\forall n\in I\quad u_n^{}\leq M$

- On dit que la suite $(u_n)_{n\in I}$ est minorée s'il existe un réel m tel que : $\forall n\in I$ $m\leq u_n$
- ullet On dit que la suite $((u_n)_{n\in I}$ est bornée si elle est majorée et minorée.

Exercice1 :Soit la suite récurrente $(u_n)_{n\in\mathbb{N}}$ définie

$$par: u_n = \frac{2 + \cos n}{3 - \sin \sqrt{n}} \quad \forall n \in \mathbb{N}$$

Montrer que $(u_n)_{n\in\mathbb{N}}$ est bornée

Indication => encadrer chaque terme + faire l'inverse + multiplier

Solutions: Soit $n \in \mathbb{N}$ on a:

 $-1 \le \cos n \le 1$ $\forall n \in \mathbb{N}$ et $-1 \le \sin \sqrt{n} \le 1$

donc: $1 \le 2 + \cos n \le 3$ et $-1 \le -\sin \sqrt{n} \le 1$

donc: $1 \le 2 + \cos n \le 3$ et $2 \le 3 - \sin \sqrt{n} \le 4$

donc: $1 \le 2 + \cos n \le 3$ et $\frac{1}{4} \le \frac{1}{3 - \sin \sqrt{n}} \le \frac{1}{2}$

donc: $\frac{1}{4} \le \frac{2 + \cos n}{3 - \sin \sqrt{n}} \le \frac{3}{2}$

cad : $\frac{1}{4} \le u_n \le \frac{3}{2}$ donc : $(u_n)_{n \in \mathbb{N}}$ est bornée

Propriété : Une suite $(u_n)_{n\in I}$ est bornée si et seulement s'il existe un réel positif M tel que :

$$\forall n \in I |u_n| \leq M$$

Professeur	Bahloul Khalid (+212) 622-17-65-52
Chapitre	Suites numériques (l'essentiel du cours + applications)
Niveaux	Bac français / 1 ^{ère} et 2 ^{ème} Bac International SM

2) Monotonie d'une suite

Activité2 :soit $(u_n)_{n\in\mathbb{N}}$ la suite récurrente définie

$$par: \begin{cases} u_0 = 1 \\ u_{n+1} = \sqrt{u_n + 2} \end{cases} \quad \forall n \in \mathbb{N}$$

Montrer par récurrence que $u_n \le u_{n+1} \quad \forall n \in \mathbb{N}$

Solutions: 1étapes : on a $u_1 = \sqrt{u_0 + 2} = \sqrt{2}$

3étapes : Montrons alors que : $u_{n+1} \le u_{n+2}$??

Pour n=0 nous avons $u_0 = 1$ donc $u_0 \le u_1$.

on a : $u_n \le u_{n+1}$ donc $u_n + 2 \le u_{n+1} + 2$ donc : $\sqrt{u_n + 2} \le \sqrt{u_{n+1} + 2}$ donc $u_{n+1} \le u_{n+2}$

Donc la proposition est vraie pour n=0

Par suite :: $\forall n \in \mathbb{N}$: $u_n \leq u_{n+1}$

2étapes : Supposons que: $u_n \le u_{n+1}$

On dit que la suite $(u_n)_{n\in\mathbb{N}}$ est croissante

Définition: Soit $(u_n)_{n\in I}$ une suite numérique

On dit que la suite $(u_n)_{n\in I}$ est croissante si :

 $\forall n \in I \ \forall m \in I : m \le n \Longrightarrow u_m \le u_n$

On dit que la suite $(u_n)_{n\in I}$ est décroissante si :

 $\forall n \in I \ \forall m \in I : m \le n \Longrightarrow u_m \ge u_n$

On dit que la suite $(u_n)_{n\in I}$ est monotone si elle est croissante ou décroissante sur \mathbb{I} .

Théorème :Soit $(u_n)_{n\in I}$ une suite numérique.

• La suite $(u_n)_{n\in I}$ est croissante si et seulement si:

 $\forall n \in I \ u_{n+1} \ge u_n$

• La suite $(u_n)_{n\in I}$ est décroissante si et

seulement si: $\forall n \in I \ u_{n+1} \leq u_n$

Exemple1: soit $(u_n)_{n\in\mathbb{N}^*}$ la suite définie par :

$$u_n = \sum_{k=1}^n \frac{2^k}{k} \qquad \forall n \in \mathbb{N}^*$$

Etudier la monotonie de la suite $(u_n)_{n\in\mathbb{N}^*}$

Professeur	Bahloul Khalid (+212) 622-17-65-52			
Chapitre	Suites numériques (l'essentiel du cours + applications)			
Niveaux	Bac français / 1 ^{ère} et 2 ^{ème} Bac International SM			

Solutions:

$$u_{n+1} - u_n = \sum_{k=1}^{n+1} \frac{2^k}{k} - \sum_{k=1}^n \frac{2^k}{k} = \sum_{k=1}^n \frac{2^k}{k} + \frac{2^{n+1}}{n+1} - \sum_{k=1}^n \frac{2^k}{k}$$

$$u_{n+1} - u_n = \frac{2^{n+1}}{n+1} > 0$$
 Donc: $u_n \le u_{n+1} \quad \forall n \in \mathbb{N}^*$

donc la suite $(u_n)_{n\in\mathbb{N}}$ est strictement croissante

3) Suite arithmétique et géométrique

Définition1 :On appelle suite arithmétique toute suite $(u_n)_{n\in I}$ définie par son premier terme et par la relation récurrente : $\forall n \in I \quad u_{n+1} = u_n + r$

Où r est un réel fixe. Le réel r s'appelle la raison de la suite $(u_n)_{n\in I}$.

Propriétés : d'une suite arithmétique.

Soit $\left(u_{_{n}}
ight)_{_{n=1}}$ une suite arithmétique de raison r et

 u_p l'un de ses termes.

1)
$$u_n = u_p + (n-p)r \quad \forall n \in I$$

2)
$$s_n = u_p + u_{p+1} + ... + u_n = \frac{(n-p+1)}{2} (u_p + u_n)$$

Démonstration:

$$S_n = U_p + U_p + r + U_p + 2r + \dots + U_p + (n-p)r$$

$$S_n = (n-p+1)U_p + r(1+2+3+....+n-p)$$

$$S_n = (n-p+1)U_p + \frac{r(n-p)(n-p+1)}{2}$$

$$S_n = (n-p+1)U_p + \frac{r(n-p)(n-p+1)}{2}$$

$$S_n = (n-p+1)U_p + \frac{r(n-p)(n-p+1)}{2}$$

$$S_n = (n-p+1)(Up + \frac{r(n-p)}{2})$$

 $S_n = (n-p+1)(\frac{2Up+r(n-p)}{2})$

$$S_n = (n-p+1)(\frac{2Up+r(n-p)}{2})$$

$$S_n = (n-p+1)(\frac{Up+Un}{2})$$

NB: pour comprendre le nombre de Up il suffit de prendre un exemple ou p=2 et n=5 on a 4 Up c'est-à-dire 5-2+1

NB:

La suite de gausse

$$S_0=1+2+...+n=n+(n-1)+....+1=$$

$$2S_0=n(n+1)$$
 $S_0=\frac{n(n+1)}{2}$

Professeur	Bahloul Khalid (+212) 622-17-65-52			
Chapitre	Suites numériques (l'essentiel du cours + applications)			
Niveaux	Bac français / 1 ^{ère} et 2 ^{ème} Bac International SM			

Définition2 :On appelle suite géométrique toute suite $(u_n)_n$ définie par son premier terme et par la relation récurrente : $u_{n+1} = qu_n \ \forall n \in I$ où q est un réel fixe. Le réel q s'appelle **la raison** de la suite $(u_n)_n$.

Propriétés : d'une suite géométrique

Si $(u_n)_{n\in I}$ est une suite géométrique de raison q et si p est un entier naturel alors :

1)
$$u_n = q^{n-p} u_p \quad \forall n \in I$$

2)
$$s_n = u_p + u_{p+1} + u_{p+2} + ... + u_{n-2} + u_{n-1} + u_n$$

Si
$$q = 1$$
 alors : $s_n = (n-p+1)u_p$

Si
$$q \ne 1$$
 alors : $s_n = u_p \frac{1 - q^{n-p+1}}{1 - q}$

Démonstration:

$$\begin{array}{l} S_n = U_p + \ U_{p+1} + \ U_{p+2} + \dots + U_n \\ S_n = U_p + \ qU_p + \ q^2U_p + \dots + q^{n-p}U_p \\ S_n = U_p \left[q + \ q^2 + \dots + q^{n-p} \right] \\ q \ S_n = U_p \left[\ q^2 + \ q^3 + \dots + q^{n-p+1} \right] \\ S_n - qS_n = U_p [1 - \ q^{n-p+1}] \end{array}$$

Exemple2: calculer en fonction de n la somme suivante :

$$S_n = \sum_{k=0}^{k=n-1} \left(\frac{1}{2}\right)^k = 1 + \frac{1}{2} + \left(\frac{1}{2}\right)^2 + \dots + \left(\frac{1}{2}\right)^{n-1}$$

Solutions :1)on pose :
$$u_n = \left(\frac{1}{2}\right)^n$$

On a : $(u_n)_n$ une suite géométrique de raison

$$q = \frac{1}{2} \operatorname{Car} : \frac{u_{n+1}}{u_n} = \frac{1}{2} \operatorname{Donc} :$$

$$s_n = \sum_{k=0}^{k=n-1} \left(\frac{1}{2}\right)^k = 1 \frac{1 - \left(\frac{1}{2}\right)^n}{1 - \frac{1}{2}} = 2 \left(1 - \left(\frac{1}{2}\right)^n\right)$$

Professeur	Bahloul Khalid (+212) 622-17-65-52			
Chapitre	Suites numériques (l'essentiel du cours + applications)			
Niveaux	Bac français / 1 ^{ère} et 2 ^{ème} Bac International SM			

II) limites d'une suite

1) Activités :

Vers quelles valeurs ces suites s'approchent quand n devient de plus en plus grand ????

$$u_n = 1 + n^2$$
 $u_n = 1 - \sqrt{n}$ $\frac{1}{n^2}$ $u_n = 1 + \frac{1}{n}$

Propriété :(limites de référence)

Les suites
$$(n)$$
; (n^2) ; (n^p) $p \in \mathbb{N}^*$; (\sqrt{n})

tendent Vers +
$$\infty$$
 en écrie : $\lim_{n\to+\infty} n = +\infty$ et

$$\lim_{n \to +\infty} n^2 = +\infty \; ; \; \lim_{n \to +\infty} n^p = +\infty \quad p \in \mathbb{N}^* \; \text{et} \quad \lim_{n \to +\infty} \sqrt{n} = +\infty$$

Propriété :(limites de référence)

Les suites
$$\left(\frac{1}{n}\right)$$
; $\left(\frac{1}{n^2}\right)$; $\left(\frac{1}{n^3}\right)$; $\left(\frac{1}{n^p}\right)$; $\left(\frac{1}{\sqrt{n}}\right)$

tendent Vers +
$$\infty$$
 en écrit : $\lim_{n\to+\infty}\frac{1}{n}=0$ et

$$\lim_{n\to+\infty}\frac{1}{n^2}=0 \; ; \; \lim_{n\to+\infty}\frac{1}{n^p}=0 \; p\in\mathbb{N}^* \; \text{et} \quad \lim_{n\to+\infty}\frac{1}{\sqrt{n}}=0$$

Définition 4:1) Une suite qui tend vers une limite finie *l* s'appelle une suite convergente.

Une suite qui n'est pas convergente est une suite divergente.

Exemples: 1) les suites :
$$\left(\frac{1}{n}\right)$$
; $\left(\frac{1}{n^2}\right)$; $\left(\frac{1}{n^3}\right)$;

$$\left(\frac{1}{n^p}\right); \left(\frac{1}{\sqrt{n}}\right)$$
 sont des suites convergentes

2) les suites :
$$(n)$$
; (n^p) $p \in \mathbb{N}^*$; (\sqrt{n}) ; $(\cos n)$;

$$((-1)^n)$$
 sont divergentes.

Professeur	Bahloul Khalid (+212) 622-17-65-52
Chapitre	Suites numériques (l'essentiel du cours + applications)
Niveaux	Bac français / 1 ^{ère} et 2 ^{ème} Bac International SM

Théorème :Si une suite $(u_n)_{n\in\mathbb{N}}$ admet une limite finie *l* cette limite est unique

Opération sur les limites des suites

$\lim u_n$	1	1		1		-00		-∞
$\lim v_n$	ľ	+∞		-00	+∞	-00		+∞
$\lim(u_n+v_n)$	l+l		+∞	-00	+∞	-∞	Form	es indéterminées
$\lim u_n$	l		l > 0 ou +∞		l < 0 ou -∞			±∞
$\lim v_n$	ľ	,	+∞	- ∞	+∞	-∞		0
$\lim(u_n\times v_n)$	l.!'		+∞	-00	-∞	+∞	Formes indéterminées	
$\lim u_n$		1	l ≠ 0		0+	0-	T	±∞
$\lim_{u \to 0} \left(\frac{1}{u_1} \right)$	<u></u>		$\frac{1}{l}$		+∞	-∞		0
lim u _n	1	1>0	ou+∞	1<	0 ou -∞	0		±ω
$\lim v_n$	l' ≠ 0	0+	0-	0+	0-	0		±ω
$\lim \left(\frac{u_n}{v_n}\right)_n \frac{l}{l'}$		+∞	-00	-00	+∞	Formes indéten	minées	Formes indéterminé

Exemple : Utiliser les Opération sur les limites des suites pour calculer les limites suivantes :

1)
$$\lim_{n \to +\infty} \frac{2}{\sqrt{3n}} - \frac{2}{3n} + \frac{5}{n^2} - 1$$
 2) $\lim_{n \to +\infty} \left(-3 + \frac{1}{n} \right) \left(1 + \frac{2}{\sqrt{n}} \right)$

3)
$$\lim_{n \to +\infty} n^2 - n$$
 4) $\lim_{n \to +\infty} \sqrt{n} - 2n$

4)
$$\lim_{n \to \infty} \sqrt{n} - 2n$$

5)
$$\lim_{n \to +\infty} 4n^2 - 2n - 5$$

5)
$$\lim_{n \to +\infty} 4n^2 - 2n - 5$$
 6) $\lim_{n \to +\infty} \frac{4n^2 - 3n - 7}{3n^2 + 5}$

7)
$$\lim_{n \to +\infty} \sqrt{n^2 - 3n + 2} - n$$

Professeur	Bahloul Khalid (+212) 622-17-65-52			
Chapitre	Suites numériques (l'essentiel du cours + applications)			
Niveaux	Bac français / 1 ^{ère} et 2 ^{ème} Bac International SM			

Solutions:

1)
$$\lim_{n\to+\infty} \frac{2}{\sqrt{3n}} - \frac{2}{3n} + \frac{5}{n^2} - 1 = 0 - 0 + 0 - 1 = -1$$

Car:
$$\lim_{n \to +\infty} \frac{2}{\sqrt{3n}} = 0$$
 et $\lim_{n \to +\infty} \frac{2}{3n} = 0$ et $\lim_{n \to +\infty} \frac{5}{n^2} = 0$

2)
$$\lim_{n \to +\infty} \frac{1}{\sqrt{3n}} = 0$$
 et $\lim_{n \to +\infty} \frac{1}{3n} = 0$ et $\lim_{n \to +\infty} \frac{1}{n^2} = 0$ terms indetermines (*)

2) $\lim_{n \to +\infty} \left(-3 + \frac{1}{n} \right) \left(1 + \frac{2}{\sqrt{n}} \right) = (-3 + 0)(1 + 0) = (-3)(1) = -3$ $\lim_{n \to +\infty} n^2 - n = \lim_{n \to +\infty} n(n-1) = +\infty$ Car: $\lim_{n \to +\infty} n = +\infty$ et $\lim_{n \to +\infty} n - 1 = 0$

Car:
$$\lim_{n \to +\infty} \frac{1}{n} = 0$$
 et $\lim_{n \to +\infty} \frac{2}{\sqrt{n}} = 0$

3)
$$\lim_{n \to +\infty} n^2 - n$$
 directement on trouve une

forme indéterminée $(+\infty - \infty)$

$$\lim_{n \to +\infty} n^2 - n = \lim_{n \to +\infty} n(n-1) = +\infty$$

$$+\infty \times +\infty = +\infty$$

4)
$$\lim_{n \to +\infty} \sqrt{n} - 2n$$
 directement on trouve une forme

indéterminée
$$(+\infty-\infty)$$

$$\lim_{n \to +\infty} \sqrt{n} - 2n = \lim_{n \to +\infty} \sqrt{n} \left(1 - 2\sqrt{n} \right) = -\infty$$

Car:
$$\lim_{n \to +\infty} \sqrt{n} = +\infty$$
 et $\lim_{n \to +\infty} (1 - 2\sqrt{n}) = -\infty$ et

$$+\infty \times -\infty = -\infty$$

5)
$$\lim_{n \to +\infty} 4n^2 - 2n - 5 = \lim_{n \to +\infty} n^2 \left(4 - \frac{2}{n} - \frac{5}{n^2} \right)$$

Et puisque : $\lim_{n\to+\infty} -\frac{2}{n} = 0$ et $\lim_{n\to+\infty} \frac{-5}{n^2} = 0$ et

$$\lim_{n \to +\infty} n^2 = +\infty$$

Alors:
$$\lim_{n\to+\infty} 4n^2 - 2n - 5 = +\infty$$

$$\lim_{n \to +\infty} \frac{4n^2 - 3n - 7}{3n^2 + 5} = \lim_{n \to +\infty} \frac{n^2 \left(4 - \frac{3}{n} - \frac{7}{n^2}\right)}{n^2 \left(3 + \frac{5}{n^2}\right)} = \lim_{n \to +\infty} \frac{\left(4 - \frac{3}{n} - \frac{7}{n^2}\right)}{\left(3 + \frac{5}{n^2}\right)} = \frac{1}{2}$$

car:
$$\lim_{n \to +\infty} -\frac{3}{n} = 0$$
 et $\lim_{n \to +\infty} \frac{-7}{n^2} = 0$ et $\lim_{n \to +\infty} \frac{5}{n^2} = 0$

$$\lim_{n \to +\infty} \frac{4n^2 - 3n - 7}{3n^2 + 5} = \lim_{n \to +\infty} \frac{n^2 \left(4 - \frac{3}{n} - \frac{7}{n^2}\right)}{n^2 \left(3 + \frac{5}{n^2}\right)} = \lim_{n \to +\infty} \frac{\left(4 - \frac{3}{n} - \frac{7}{n^2}\right)}{\left(3 + \frac{5}{n^2}\right)} = \frac{4}{3}$$

$$\lim_{n \to +\infty} \sqrt{n^2 - 3n + 2} - n = \lim_{n \to +\infty} \frac{\left(\sqrt{n^2 - 3n + 2} + n\right)\left(\sqrt{n^2 - 3n + 2} - n\right)}{\left(\sqrt{n^2 - 3n + 2} + n\right)}$$

$$= \lim_{n \to +\infty} \frac{n^2 - 3n + 2 - n^2}{\sqrt{n^2 - 3n + 2} + n} = \lim_{n \to +\infty} \frac{-3n + 2}{\sqrt{n^2 \left(1 - \frac{3}{n} + \frac{2}{n^2}\right)} + n}$$

$$\lim_{n \to +\infty} \frac{n^2 - 3n + 2 - n}{\sqrt{n^2 - 3n + 2} + n} = \lim_{n \to +\infty} \frac{-3n + 2}{\sqrt{n^2 - 3n$$

$$= \lim_{n \to +\infty} \frac{n\left(-3 + \frac{2}{n}\right)}{n\left(\sqrt{\left(1 - \frac{3}{n} + \frac{2}{n^2}\right)} + 1\right)} \lim_{n \to +\infty} \frac{-3 + \frac{2}{n}}{\sqrt{\left(1 - \frac{3}{n} + \frac{2}{n^2}\right)} + 1} = -\frac{3}{2}$$

Remarques :1) La limite d'une suite polynôme en est la limite de son plus grand terme

La limite d'une suite rationnelle en est la limite du rapport des termes de plus grand degré

Professeur	Bahloul Khalid (+212) 622-17-65-52
Chapitre	Suites numériques (l'essentiel du cours + applications)
Niveaux	Bac français / 1 ^{ère} et 2 ^{ème} Bac International SM

Exemple: calculer les limites suivantes:

1)
$$\lim_{n \to +\infty} 4n^3 - 5n^2 + 3n - 1$$
 2) $\lim_{n \to +\infty} 6n^3 - 2n^5 + 7n - 9$

3)
$$\lim_{n \to +\infty} \frac{9n-3}{3n+5}$$
 4) $\lim_{n \to +\infty} \frac{6n^2-9}{3n+1}$ 5) $\lim_{n \to +\infty} \frac{7n^2+1}{14n^3-5n+9}$

6)
$$\lim_{n\to+\infty} \frac{n^2+1}{n^5+3n-4}$$

Solutions:

1)
$$\lim_{n \to \infty} 4n^3 - 5n^2 + 3n - 1 = \lim_{n \to \infty} 4n^3 = +\infty$$

2)
$$\lim_{n \to \infty} 6n^3 - 2n^5 + 7n - 9 = \lim_{n \to \infty} -2n^5 = -\infty$$

3)
$$\lim_{n\to+\infty} \frac{9n-3}{3n+5} = \lim_{n\to+\infty} \frac{9n}{3n} = \frac{9}{3} = 3$$

4)
$$\lim_{n \to +\infty} \frac{6n^2 - 9}{3n + 1} = \lim_{n \to +\infty} \frac{6n^2}{3n} = \lim_{n \to +\infty} \frac{3 \times 2 \times n \times n}{3n} = \lim_{n \to +\infty} 2 \times n = +\infty$$

5)
$$\lim_{n \to +\infty} \frac{7n^2 + 1}{14n^3 - 5n + 9} = \lim_{n \to +\infty} \frac{7n^2}{14n^3} = \lim_{n \to +\infty} \frac{7n \times n}{14n \times n \times n} = \lim_{n \to +\infty} \frac{1}{2n} = 0$$
6)
$$\lim_{n \to +\infty} \frac{n^2 + 1}{n^5 + 3n - 4} = \lim_{n \to +\infty} \frac{n^2}{n^5} = \lim_{n \to +\infty} \frac{n \times n}{n \times n \times n \times n \times n} = \lim_{n \to +\infty} \frac{1}{n^3} = 0$$

6)
$$\lim_{n \to +\infty} \frac{n^2 + 1}{n^5 + 3n - 4} = \lim_{n \to +\infty} \frac{n^2}{n^5} = \lim_{n \to +\infty} \frac{n \times n}{n \times n \times n \times n \times n} = \lim_{n \to +\infty} \frac{1}{n^3} = 0$$

Théorème 1 :Si la suite $(u_n)_{n\in\mathbb{N}}$ est définie

d'une façon explicite $u_n = f(n)$ alors :

$$\lim_{n \to +\infty} u_n = \lim_{x \to +\infty} f(x)$$

Théorème 3: Soient $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ deux

suites convergentes tels que :

 $(\exists N \in \mathbb{N})(\forall n > N)(v_n \leq u_n)$ Alors: $\lim v_n \leq \lim u_n$

Théorème 4 : (critères de divergence1)

Soient $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ deux suites numériques

tels que : $(\exists N \in \mathbb{N})(\forall n > N)(v_n \leq u_n)$ et

 $\lim v_n = +\infty$ on a alors : $\lim u_n = +\infty$

Indication => écrire la définition de la divergence de V_n + noter le rang N1 à partir duquel elle diverge puis noter le rang N2 à partir du quel Un>Vn et prenez le max entre eux

Professeur	Bahloul Khalid (+212) 622-17-65-52			
Chapitre	Suites numériques (l'essentiel du cours + applications)			
Niveaux	Bac français / 1 ^{ère} et 2 ^{ème} Bac International SM			

Exemple : Soit $(v_n)_{n\in\mathbb{N}}$ une suites tel que :

$$v_n = 2(-1)^n + \frac{4}{3}n^2 + 2 \qquad \forall n \in \mathbb{N}$$

1)montrer que : $v_n \ge \frac{4}{3}n^2 \quad \forall n \in \mathbb{N}$

2)en déduire : $\lim_{n\to+\infty} v_n$

Solutions :1) on a : $(-1)^n \ge -1 \quad \forall n \in \mathbb{N}$

Donc: $2(-1)^n \ge -2$ donc $2(-1)^n + \frac{4}{3}n^2 + 2 \ge -2 + \frac{4}{3}n^2 + 2$

Donc: $v_n \ge \frac{4}{3}n^2 \quad \forall n \in \mathbb{N}$

2) on a: $v_n \ge \frac{4}{3}n^2 \quad \forall n \in \mathbb{N} \text{ et } \lim \frac{4}{3}n^2 = +\infty$

Donc: $\lim_{n\to+\infty} v_n = +\infty$ d'après: Théorème 4

Exercice6: Soit $(v_n)_{n\in\mathbb{N}}$ une suites tel que :

 $v_n = 3n + 5\sin n \quad \forall n \in \mathbb{N}$

calculer: $\lim_{n\to+\infty} v_n$

Solutions: on a: $\sin n \ge -1 \quad \forall n \in \mathbb{N}$

Donc: $5\sin n \ge -5$ donc $v_n \ge 3n-5$

on a: $v_n \ge 3n-5 \quad \forall n \in \mathbb{N} \text{ et } \lim 3n-5 = +\infty$

Donc : $\lim_{n\to+\infty} v_n = +\infty$ d'après : Théorème 4

Théorème 5 : (critères de divergence2)

Soient $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ deux suites numériques

tels que : $(\exists N \in \mathbb{N})(\forall n > N)(v_n \leq u_n)$ et $\lim u_n = -\infty$

on a alors : $\lim v_n = -\infty$

Même démonstration mais avec le min

Exemple: Soit $(v_n)_{n\in\mathbb{N}}$ une suites tel que :

$$v_n = -4n + 3\cos n \quad \forall n \in \mathbb{N}$$

calculer: $\lim_{n \to +\infty} v_n$

Professeur	Bahloul Khalid (+212) 622-17-65-52			
Chapitre	Suites numériques (l'essentiel du cours + applications)			
Niveaux	Bac français / 1 ^{ère} et 2 ^{ème} Bac International SM			

Solutions: on a: $\cos n \le 1 \quad \forall n \in \mathbb{N}$

Donc: $3\cos n \le 3$ donc $v_n \le -4n+3$

on a: $v_n \le -4n+3$ $\forall n \in \mathbb{N}$ et $\lim -4n+3 = -\infty$

Donc : $\lim_{n\to+\infty} v_n = -\infty$ d'après : Théorème 5

Théorème 6 : (critères de convergence)

Soient $(u_{_n})_{_{n\in\mathbb{N}}}$ et $(v_{_n})_{_{n\in\mathbb{N}}}$ deux suites numériques

et l un réel. tels que: $|u_n - l| \le v_n \quad \forall n \ge p$

et $\lim_{n\to +\infty} v_n = 0$ alors $\lim_{n\to +\infty} u_n = l$

Exemple2 : soit (u_n) la suite définie par :

$$u_n = 3 + \frac{\sin n}{n^3} \quad \forall n \in \mathbb{N}^*$$

calculer : $\lim_{n\to +\infty} u_n$

Solutions: on a: $u_n = 3 + \frac{\sin n}{n^3}$

donc: $u_n - 3 = \frac{\sin n}{n^3}$ donc: $|u_n - 3| = \left| \frac{\sin n}{n^3} \right|$

donc: $|u_n - 3| \le \frac{1}{n^3} \operatorname{car} : |\sin n| \le 1$

et puisque : $\lim_{n \to +\infty} \frac{1}{n^3} = 0$ alors : $\lim_{n \to +\infty} u_n = 3$

Théorème 7 : (critères de convergence)

Soient $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ et $(w_n)_{n\in\mathbb{N}}$ des suites numériques et l un réel. Tels que :

 $w_n \prec u_n \prec v_n$ et $\forall n \ge p$ et $\lim_{n \to +\infty} v_n = \lim_{n \to +\infty} w_n = l$

Alors : $(u_n)_{n\in\mathbb{N}}$ est convergente et $\lim_{n\to+\infty}u_n=l$

Professeur	Bahloul Khalid (+212) 622-17-65-52
Chapitre	Suites numériques (l'essentiel du cours + applications)
Niveaux	Bac français / 1 ^{ère} et 2 ^{ème} Bac International SM

Preuve => il existe un rang N1 tel que l-a <Vn<l+a mais on sait que pour tout n on a Vn<Un donc l-a <Un à partir de N1...de la meme façon à partir de N2 on a Wn qui converge donc l-a<Wn<l+a mais on sait que Un<Wn donc à partir de N2 on a Un<I+a donc à partir du max (N1,N2) on a Un qui converge

Exemple: calculer: $\lim \frac{\sin n}{n}$

Solutions: on a: $-1 \le \sin n \le 1 \quad \forall n \in \mathbb{N}$

Donc: $\frac{-1}{n} \le \frac{\sin n}{n} \le \frac{1}{n} \quad \forall n \in \mathbb{N}^*$

Or on a : $\lim_{n \to +\infty} \frac{1}{n} = \lim_{n \to +\infty} \frac{\sin n}{n} = 0$

Théorème 8:1) Toute suite croissante et majorée est convergente.

2) Toute suite décroissante et minorée est convergente

Théorème 9:1) Toute suite croissante et non majorée tend vers +∞

2) Toute suite décroissante et non minorée tend vers $-\infty$

Exemple: Soit $(v_n)_{n\in\mathbb{N}}$ une suites tel que :

$$v_{n+1} = v_n + n^4$$
 $\forall n \in \mathbb{N}$ et $v_0 = 1$

montrer que : $\lim_{n\to+\infty} v_n = +\infty$

Solutions: on a: $v_{n+1} - v_n = n^4 \ge 0 \quad \forall n \in \mathbb{N}$

Donc: $(v_n)_{n\in\mathbb{N}}$ est croissante

Donc: $\lim_{n \to \infty} v_{n+1} - v_n = 0$ or on a: $v_{n+1} - v_n = n^4$ Montrons que $(v_n)_{n\in\mathbb{N}}$ est non majorée ? Donc: $\lim_{n\to\infty} v_{n+1} - v_n = \lim_{n\to+\infty} n^4 = +\infty$ absurde $(+\infty = 0)$

Supposons que $(v_n)_{n\in\mathbb{N}}$ est majorée

donc $(v_n)_{n\in\mathbb{N}}$ est non majorée et croissante Donc: $(v_n)_{n\in\mathbb{N}}$ converge vers un $l\in\mathbb{R}$

Donc: $\lim_{n\to+\infty} v_n = l$ et on a aussi $\lim_{n\to+\infty} v_{n+1} = l$ donc: $\lim v_n = +\infty$

Professeur	Bahloul Khalid (+212) 622-17-65-52
Chapitre	Suites numériques (l'essentiel du cours + applications)
Niveaux	Bac français / 1 ^{ère} et 2 ^{ème} Bac International SM

Suite de la forme : $v_n = f(u_n)$

Théorème: Soit f une fonction continue sur un intervalle I; et (u_n) une suite numérique telle que

$$(\exists N \in \mathbb{N})(\forall n > N)(u_n \in I)$$

Si $\lim_{n \to \infty} u_n = l$ et f continue en l

Alors
$$\lim_{n\to+\infty} f(u_n) = f(l)$$

Exemple : Soit $(v_n)_{n\in\mathbb{N}}$ une suites tel que :

$$v_n = \sqrt{\frac{2n^2 - n + 1}{3n^2 + 4}} \quad \forall n \in \mathbb{N}$$

Calculer $\lim_{n\to+\infty} v_n$

Solutions : on pose : $u_n = \frac{2n^2 - n + 1}{3n^2 + 4}$

Donc: $v_n = f(u_n)$ avec: $f(x) = \sqrt{x}$

On a: $\lim_{n \to +\infty} u_n = \lim_{n \to +\infty} \frac{2n^2 - n + 1}{3n^2 + 4} = \lim_{n \to +\infty} \frac{2n^2}{3n^2} = \frac{2}{3}$

Et f est continue en $\frac{2}{3}$

Donc: $\lim_{n\to+\infty} v_n = f\left(\frac{2}{3}\right) = \sqrt{\frac{2}{3}}$

limite de Suite de la forme : a^n et n^p

Proposition: $a \in \mathbb{R}$

1)a)si a > 1 $\lim a^n = +\infty$

b)si $-1 \prec a \prec 1 \lim_{n \to +\infty} a^n = 0$

c)si $a \le -1$ (a^n) n'a pas de limites

2) $\lim n^p = +\infty$ si $p \in \mathbb{N}^*$

b)si $-1 \prec a \prec 1$ alors $|a| \prec 1$ donc : $\frac{1}{|a|} \succ 1$

donc: $\lim_{n\to+\infty} \left(\frac{1}{|a|}\right)^n = +\infty$ donc: $\lim_{n\to+\infty} |a^n| = 0$

 $donc: \lim_{n \to \infty} a^n = 0$

c)si $a \le -1$ alors: $\lim_{n \to \infty} |a^n| = \lim_{n \to \infty} |a|^n = +\infty$ car |a| > 1mais a^n change de signe donc (a^n) n'a pas de limites

2) $\lim_{n \to \infty} n^p$ si $p \in \mathbb{N}^*$?

On a : $n^p \ge n$ car $p \in \mathbb{N}^*$ et puisque : $\lim_{n \to +\infty} n = +\infty$

alors: $\lim n^p = +\infty$

Preuve :1) a) $a > 1 \Leftrightarrow a = 1 + \alpha$ avec $\alpha > 0$

Donc: $a^n = (1+\alpha)^n \ge 1+n\alpha$ d'après l'inégalité de

Bernoulli

Donc: $a^n \ge n\alpha$ et puisque $\lim n\alpha = +\infty$

alors: $\lim a^n = +\infty$ $n \rightarrow +\infty$

Professeur	Bahloul Khalid (+212) 622-17-65-52
Chapitre	Suites numériques (l'essentiel du cours + applications)
Niveaux	Bac français / 1 ^{ère} et 2 ^{ème} Bac International SM

Exemples: calculer les limites suivantes:

$$\lim_{n \to +\infty} 2^n \quad ; \lim_{n \to +\infty} \left(\frac{2}{3}\right)^n \quad ; \lim_{n \to +\infty} \left(-5\right)^n$$

Solutions:
$$\lim_{n \to \infty} 2^n = +\infty$$
 car $a = 2 > 1$

$$\lim_{n \to +\infty} \left(\frac{2}{3}\right)^n = 0 \quad \text{car } -1 < a = \frac{2}{3} < 1$$

$$(-5)^n$$
 N'a pas de limites car $a = -5 < -1$

Exercice10: calculer les limites suivantes

$$\lim_{n\to+\infty} (0,7)^n ; \lim_{n\to+\infty} (\sqrt{2})^n ; \lim_{n\to+\infty} (-2)^n ; \lim_{n\to+\infty} (4)^{-n}$$

$$\lim_{n \to +\infty} \frac{(5)^n}{(4)^n} \; ; \; \lim_{n \to +\infty} (3)^n - \frac{1}{2^n} \; ; \; \lim_{n \to +\infty} \frac{(3)^n + (2)^n}{(2)^n}$$

Solutions:
$$\lim_{n \to +\infty} (0,7)^n = 0$$
 car $-1 < a = 0,7 < 1$

$$\lim_{n \to \infty} \sqrt{2}^n = +\infty \qquad \text{car } a = \sqrt{2} > 1$$

$$\lim_{n \to +\infty} \frac{\left(5\right)^n}{\left(4\right)^n} = \lim_{n \to +\infty} \left(\frac{5}{4}\right)^n = +\infty \text{ car } a = \frac{5}{4} > 1$$

$$\lim_{n \to \infty} (-2)^n$$
 N'a pas de limites car $a = -2 < -1$

$$\lim_{n \to +\infty} (-2)^n \text{ N'a pas de limites car } a = -2 < -1 \qquad \lim_{n \to +\infty} (3)^n - \frac{1}{2^n} = +\infty - 0 = +\infty \text{ car } a = 3 > 1 \text{ et } -1 < \frac{1}{2} < 1$$

$$\lim_{n \to +\infty} (4)^{-n} = \lim_{n \to +\infty} \frac{1}{(4)^n} = \lim_{n \to +\infty} (\frac{1}{4})^n = 0 \quad \text{car} - 1 < a = \frac{1}{4} < 1$$

$$\lim_{n \to +\infty} \left(4\right)^{-n} = \lim_{n \to +\infty} \frac{1}{\left(4\right)^{n}} = \lim_{n \to +\infty} \left(\frac{1}{4}\right)^{n} = 0 \quad \text{car} - 1 < a = \frac{1}{4} < 1 \qquad \lim_{n \to +\infty} \frac{\left(3\right)^{n} + \left(2\right)^{n}}{\left(2\right)^{n}} = \lim_{n \to +\infty} \frac{\left(3\right)^{n} + \left(2\right)^{n}}{\left(2\right)^{n}} = \lim_{n \to +\infty} \left(\frac{3}{2}\right)^{n} + 1 = +\infty + 1 = +\infty$$

Suite de la forme : $u_{n+1} = f(u_n)$

Théorème :Soit f une fonction définie sur un intervalle I et (u_n) une suite numérique telle que

- a) f est continue sur I
- b) $f(I) \subset I$
- c) $(\forall n \in \mathbb{N})(u_{n+1} = f(u_n))$
- d) $u_0 \in I$ (donc $(\forall n \in \mathbb{N})(u_n \in I)$
- e) (u_n) est convergente

Alors la suite (u_n) tend vers l solution de

l'équation f(x) = x

Professeur	Bahloul Khalid (+212) 622-17-65-52
Chapitre	Suites numériques (l'essentiel du cours + applications)
Niveaux	Bac français / 1 ^{ère} et 2 ^{ème} Bac International SM

Exercice11: Soit la suite (u_n) définie par : $u_0 = 1$

et
$$u_{n+1} = f(u_n)$$
 où $f(x) = \sqrt{\frac{1+x}{2}}$

- 1) Etudier les variations de f sur I = [0,1]
- et Montrer que $f(I) \subset I$
- 2) a) Montrer que : $(\forall n \in \mathbb{N})$ $u_n \in I = [0,1]$
- b) Montrer que la suite (u_n) est croissante, puis en déduire qu'elle est convergente.
- c) Calculer la limite de la suite (u_n)

Solution: 1) $f(x) = \sqrt{\frac{1+x}{2}}$

La fonction f est croissante et continue sur I = [0,1] donc:

$$f(I) = f([0,1]) = [f(0), f(1)] = \left[\frac{\sqrt{2}}{2}, 1\right] \subset [0,1]$$

2) a) montrons que : $(\forall n \in \mathbb{N}) \ 0 \le u_n \le 1$

- on a : $0 \le u_0 \le 1$ la ppté est vraie pour n=0
- supposons que : $0 \le u_n \le 1$
- montrons que : $0 \le u_{n+1} \le 1$?

on a: $0 \le u_n \le 1$ donc $u_n \in I = [0,1]$

donc: $f(u_n) \in f(I) \subset I$ donc: $u_{n+1} \in [0,1]$

donc: $0 \le u_{n+1} \le 1$

Conclusion: $(\forall n \in \mathbb{N}) \ 0 \le u_n \le 1$

2) b)
$$u_{n+1} - u_n = \sqrt{\frac{1 + u_n}{2}} - u_n$$
 On a : $\frac{1 + u_n}{2} - u_n^2 = \frac{-2u_n^2 + u_n + 1}{2} = \frac{-2(u_n + u_n)}{2}$ Et puisque : $0 \le u_n \le 1$ alors : $u_{n+1} - u_n \ge 1$ Donc : la suite (u_n) est croissante et puisque : (u_n) majorée par 1 alors : (u_n) est convergente.

On a:
$$\frac{1+u_n}{2} - u_n^2 = \frac{-2u_n^2 + u_n + 1}{2} = \frac{-2(u_n - 1)(u_n + \frac{1}{2})}{2}$$

Et puisque : $0 \le u_n \le 1$ alors : $u_{n+1} - u_n \ge 0$

c) (u_n) est convergente et la limite est solutions

de l'équation f(x) = x

donc:
$$l = f(l) \Leftrightarrow l = \sqrt{\frac{1+l}{2}} \Leftrightarrow 2l^2 - l - 1 = 0$$

donc: l=1 ou $l=-\frac{1}{2}$ et puisque: $0 \le l \le 1$

donc: $\lim_{n \to \infty} u_n = 1$

Professeur	Bahloul Khalid (+212) 622-17-65-52
Chapitre	Suites numériques (l'essentiel du cours + applications)
Niveaux	Bac français / 1 ^{ère} et 2 ^{ème} Bac International SM

Propriété : Toute suite convergente est bornée

Démonstration => si elle converge alors les termes à partir de N1 sont dans l-a et l+a donc bornée les autres pour n<N1 forment un ensemble fini et non vide donc borné...donc la suite est bornée par le max de l+a et la borne sup et par le min de l-a et la borne inf

Exemple: Soit les suites numériques (u_n) et (v_n)

définies par :
$$u_n = \sum_{k=1}^n \frac{1}{k^3}$$
 et $v_n = u_n + \frac{1}{n}$

 $\forall n \in \mathbb{N}^*$

- 1) Montrer que la suite (u_n) est croissante et que la suite (v_n) est décroissante.
- 2) calculer : $\lim_{n\to+\infty} v_n u_n$

Solution:

1)
$$u_{n+1} - u_n = \frac{1}{(n+1)^3} \succ 0$$
 donc : (u_n) est croissante

$$v_{n+1} - v_n = u_{n+1} - u_n + \frac{1}{n+1} - \frac{1}{n}$$

$$v_{n+1} - v_n = \frac{1}{(n+1)^3} + \frac{1}{n+1} - \frac{1}{n} = -\frac{(n^2 + n + 1)}{n(n+1)^3} < 0$$

donc : (v_n) est décroissante.

2)on a
$$\lim_{n \to +\infty} v_n - u_n = \lim_{n \to +\infty} \frac{1}{n} = 0$$