Professeur	Bahloul Khalid (+212) 622-17-65-52	
Chapitre	Dérivation (l'essentiel du cours + applications)	
Niveaux	1 ^{ère} et 2 ^{ème} Bac International et mission française	

La dérivation d'une fonction numérique

I- La dérivabilité d'une fonction en un point

1-1/ Le nombre dérivé

Soit f une fonction définie sur un intervalle ouvert I et $a \in I$.

On dit que la fonction f est dérivable en a, s'il existe un nombre réel l tel que :

$$\lim_{h \to 0} \frac{f(a+h) - f(a)}{h} = l$$

Le réel l est appelé le nombre dérivé de la fonction f en a, il est noté : f'(a)

On écrit :
$$f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h} = l$$
 ou $f'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a} = l$

Exemple: On considère la fonction f dénie sur \mathbb{R}

 $f(x) = x^2 + x - 3$

Justifier que f est dérivable en -2 et préciser f'(-2)

Solution:

$$\lim_{x \to -2} \frac{f(x) - f(-2)}{x - (-2)} = \lim_{x \to -2} \frac{x^2 + x - 3 + 1}{x + 2} = \lim_{x \to -2} \frac{x^2 + x - 2}{x + 2}$$

$$= \lim_{x \to -2} \frac{(x+2)(x-1)}{x+2} = \lim_{x \to -2} x - 1 = -3 = f'(-2)$$

Donc f est dérivable en en -2 et f'(-2) = -3

Remarque

Si f est dérivable en a et $\lim_{x\to a} \frac{f(x)-f(a)}{x-a} = f'(a)$

On pose : h = x - a si x end vers a alors h tend vers 0 et on obtient

$$\lim_{h \to 0} \frac{f(a+h) - f(a)}{h} = f'(a)$$

Professeur	Bahloul Khalid (+212) 622-17-65-52	
Chapitre	Dérivation (l'essentiel du cours + applications)	
Niveaux	1 ^{ère} et 2 ^{ème} Bac International et mission française	

Application : Calculer le nombre dérivé de $f(x) = x^3 + x$ en a = 1 en utilisant la deuxième

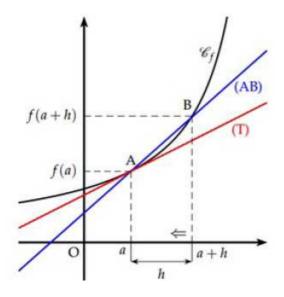
formulation de la dérivation

Solution:
$$\lim_{h \to 0} \frac{f(a+h) - f(a)}{h} = \lim_{h \to 0} \frac{f(1+h) - f(1)}{h}$$

$$= \lim_{h \to 0} \frac{(1+h)^3 + 1 + h - 2}{h} = \lim_{h \to 0} \frac{h^3 + 3h^2 + 3h + 1 + 1 + h - 2}{h}$$

$$= \lim_{h \to 0} \frac{h^3 + 3h^2 + 4h}{h} = \lim_{h \to 0} h^2 + 3h + 4 = 4 = f'(1)$$

1-2/ Interprétation géométrique du nombre dérivé



Le nombre dérivé en un point x_0 est le coefficient directeur de la tangente à la courbe au point x_0

$$(T)\ :\ y=f^{\prime}\left(a
ight) \left(x-a
ight) +f\left(a
ight)$$

La fonction $u: x \mapsto f'(a)(x-a) + f(a)$ est appelée la fonction affine tangente à la fonction f au point a.

Professeur	Bahloul Khalid (+212) 622-17-65-52	
Chapitre	Dérivation (l'essentiel du cours + applications)	
Niveaux	1 ^{ère} et 2 ^{ème} Bac International et mission française	

Exemple:

Déterminer l'équation de la tangente à la courbe

de la fonction $f(x) = \sin x$ en A(0, f(0))

Solution:
$$\lim_{x\to 0} \frac{f(x)-f(0)}{x-0} = \lim_{x\to 0} \frac{\sin x}{x} = 1 = f'(0)$$

Donc f est dérivable en en 0

(T):
$$y = f'(0)(x - 0) + f(0)$$

L'équation de la tangente à la courbe

en A(0, f(0)) est : (T): y = x

1-3/ Approximation d'une fonction dérivable en un point par une fonction affine

La tangente à la courbe au point x_0 est une approximation affine de la fonction au voisinage de x_0

II- Dérivabilité à droite - dérivabilité à gauche

2-1/ Définitions et propriétés

Définition 1

Soit f une fonction définie sur un intervalle de la forme : ([$a; a+r[\ r>0$)

On dit que f est dérivable à droite en a s'il existe un réel l tel que : $\lim_{h\to 0^+} \frac{f(a+h)-f(a)}{h} = l$

Le réel l est appelé le nombre dérivé de la fonction f à droite en a, et on le note par : $f'_d(a)$

On écrit :
$$f'_d(a) = \lim_{h \to 0^+} \frac{f(a+h) - f(a)}{h} = \lim_{x \to a^+} \frac{f(x) - f(a)}{x - a}$$

Définition 2

Soit f une fonction définie sur un intervalle de la forme : $(|a-r;a| \ r>0)$

On dit que f est dérivable à gauche en a s'il existe un réel l tel que : $\lim_{h\to 0^-} \frac{f(a+h)-f(a)}{h} = l$

Le réel l est appelé le nombre dérivé de la fonction f à gauche en a, et on le note par : $f'_g(a)$

On écrit :
$$f'_g(a) = \lim_{h \to 0^-} \frac{f(a+h) - f(a)}{h} = \lim_{x \to a^-} \frac{f(x) - f(a)}{x - a}$$

Professeur	Bahloul Khalid (+212) 622-17-65-52
Chapitre	Dérivation (l'essentiel du cours + applications)
Niveaux	1 ^{ère} et 2 ^{ème} Bac International et mission française

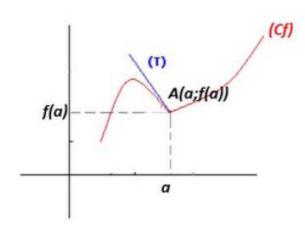
Propriété

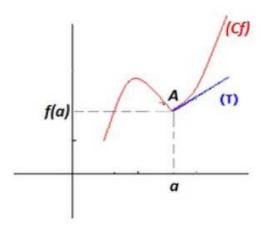
Soit f une fonction définie sur un intervalle ouvert I et $a \in I$.

f est dérivable en a si et seulement si f est dérivable à droite en a et f est dérivable à gauche en a et $f'_d(a) = f'_g(a)$

2-2/ Interprétation géométrique - Demi droite tangente en un point

Si f est dérivable à droite en , cela signifie graphiquement que la courbe de la fonction f admet une demi-tangente au point A(a; f(a)) d'équation : (T_d) : $y = f'_d(a)(x-a) + f(a)$ Si f est dérivable à gauche en a, cela signifie graphiquement que la courbe de la fonction f admet une demi-tangente au point A(a; f(a)) d'équation : (T_g) : $y = f'_g(a)(x-a) + f(a)$





$$\begin{cases} (T): y = f_g'(\mathbf{a})(x - \mathbf{a}) + f(\mathbf{a}) \\ x \le \mathbf{a} \end{cases}$$

$$\begin{cases} (T): y = f_d'(\mathbf{a})(x - \mathbf{a}) + f(\mathbf{a}) \\ x \ge \mathbf{a} \end{cases}$$

Professeur	Bahloul Khalid (+212) 622-17-65-52	
Chapitre	Dérivation (l'essentiel du cours + applications)	
Niveaux	1 ^{ère} et 2 ^{ème} Bac International et mission française	

La limite	La dérivabilité	Interprétation géométrique	
$\lim_{x \to a} \frac{f(x) - f(a)}{x - a} = l$	f est dérivable en a et on a : $f'(a) = l$	(C_f) admet une tangente d'équation : $y = f'(a)(x-a) + f(a)$ au point $A(a; f(a))$.	
$\lim_{x \to a^{\pm}} \frac{f(x) - f(a)}{x - a} = \infty$	f n'est pas dérivable en a.	(C_f) admet une demi-tangente verticale d'équation $x = a$ au point $A(a; f(a))$.	
$\lim_{x \to a^+} \frac{f(x) - f(a)}{x - a} = l$	f est dérivable à droite en a et on $a: f'_d(a) = l$	n (C_f) admet une demi-tangente au point $A(a; f(a))$ d'équation $y = f'_d(a)(x-a) + f(a)$ et $x \ge a$.	
$\lim_{x \to a^{-}} \frac{f(x) - f(a)}{x - a} = I$	f est dérivable à gauche en a et on a : $f'_g(a) = l$	et (C_f) admet une demi-tangente au point $A(a; f(a))$ d'équation $y = f'_g(a)(x-a) + f(a)$ et $x \le a$.	

Application 1

soit f une fonction définie par :

$$\begin{cases} f(x) = \sqrt{x} \dots x \ge 1 \\ f(x) = \frac{1}{4}x^2 + \frac{3}{4} \dots x < 1 \end{cases}$$

étudier la dérivabilité de f en $x_0 = 1$

Solution: on a $f(1) = \sqrt{1} = 1$

$$\lim_{x \to 1^{+}} \frac{f(x) - f(1)}{x - 1} = \lim_{x \to 0^{+}} \frac{\sqrt{x} - 1}{x - 1} = \lim_{x \to 0^{+}} \frac{\sqrt{x} - 1}{\left(\sqrt{x}\right)^{2} - 1^{2}}$$

$$= \lim_{x \to 0^+} \frac{1}{\sqrt{x+1}} = \frac{1}{2} = f_d'(1)$$

Donc f est dérivable à droite en 1

$$\lim_{x \to 1^{-}} \frac{f(x) - f(1)}{x - 1} = \lim_{x \to 1^{-}} \frac{\frac{1}{4}x^{2} + \frac{3}{4} - 1}{x - 1} = \lim_{x \to 1^{-}} \frac{1}{4}(x + 1) = \frac{1}{2} = f'_{g}(1)$$

Donc f est dérivable à gauche en 1

et on a : $f'_{d}(1) = f'_{g}(1)$

Donc f est dérivable en 1 et $f'(1) = \frac{1}{2}$

Application 2

Professeur	Bahloul Khalid (+212) 622-17-65-52
Chapitre	Dérivation (l'essentiel du cours + applications)
Niveaux	1 ^{ère} et 2 ^{ème} Bac International et mission française

soit f une fonction définie par :

$$f(x) = x^2 - |x|$$
 étudier la dérivabilité de f en $x_0 = 0$

Solution:

$$\lim_{x \to 0^+} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0^+} \frac{x^2 - x}{x} = \lim_{x \to 0^+} x - 1 = -1 = f_d'(0)$$

donc f est dérivable à droite en 0

$$\lim_{x \to 0^{-}} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0^{-}} \frac{x^{2} + x}{x} = \lim_{x \to 0^{-}} x + 1 = 1 = f'_{g}(0)$$

Donc f est dérivable à gauche en 0

Mais on a : $f'_{a}(0) \neq f'_{g}(0)$

Donc : f n'est pas dérivable en 0.

III- La fonction dérivé d'une fonction dérivable

3-1/ La fonction dérivé

Définitions

On dit qu'une fonction f est dérivable sur un intervalle ouvert a; b si f est dérivable en tout point de a; b.

On dit qu'une fonction f est dérivable sur l'intervalle fermer [a;b] si f est dérivable sur]a;b[et f dérivable à droite en a et à gauche en b.

Si f est dérivable sur un intervalle ouvert I, alors la fonction dérivée de f est la fonction noté f' est définie de I vers $\mathbb R$:

$$f^{\prime}:I\mapsto\mathbb{R} \ x\mapsto f^{\prime}\left(x
ight)$$

3-3/ Fonction dérivée des fonctions usuelles

Professeur	Bahloul Khalid (+212) 622-17-65-52
Chapitre	Dérivation (l'essentiel du cours + applications)
Niveaux	1 ^{ère} et 2 ^{ème} Bac International et mission française

La fonction f	L'ensemble de définition de f	La fonction f'	L'ensemble de définition de f'
$f: x \mapsto a \ (a \in \mathbb{R})$	R	$f': x \mapsto 0$	R
$f: x \mapsto x$	R	$f': x \mapsto 1$	R
$f: x \mapsto x^n (n \in \mathbb{N}^* - \{1\})$	R	$f': x \mapsto nx^{n-1}$	R
$f :\mapsto \sqrt{x}$	[0;+∞[$f': x \mapsto \frac{1}{2\sqrt{x}}$]0;+∞[
$f: x \mapsto \frac{1}{x}$	R*	$f': x \mapsto -\frac{1}{x^2}$]0; +∞[ou] - ∞; 0[
$f: x \mapsto \sin(x)$	R	$f': x \mapsto \cos(x)$	R
$f: x \mapsto \cos(x)$	R	$f': x \mapsto -\sin(x)$	R
$f: x \mapsto ax + b$	R	$f': x \mapsto a$	R

3-4/ Opérations sur les fonctions dérivables

Propriété

Si f et g sont deux fonction dérivables sur un intervalle I et $k \in \mathbb{R}$, alors on a :

- 1) La fonction f+g est dérivable sur l'intervalle I et on a : (f+g)'=f'+g'
- 2) La fonction k. f est dérivable sur l'intervalle I et on a : (k. f)' = k. f'
- 3) La fonction $f \times g$ est dérivable sur l'intervalle I et on a : $(f \times g)' = f' \times g + f \times g'$
- 4) Si de plus $(\forall x \in I) g(x) \neq 0$, alors :
 - La fonction $\frac{1}{g}$ est dérivable sur l'intervalle I et on a : $\left(\frac{1}{g}\right)' = \frac{-g'}{g^2}$
 - La fonction $\frac{f}{g}$ est dérivable sur l'intervalle I et on a : $\left(\frac{f}{g}\right)' = \frac{f' \times g f \times g'}{g^2}$

Remarque

Toute fonction polynôme est dérivable sur \mathbb{R} .

Toute fonction rationnelle est dérivable sur chaque intervalle inclus dans son ensemble de définition.

Professeur	Bahloul Khalid (+212) 622-17-65-52
Chapitre	Dérivation (l'essentiel du cours + applications)
Niveaux	1 ^{ère} et 2 ^{ème} Bac International et mission française

Dérivée de la somme	(u+v)'=u'+v'
Dérivée du produit par un scalaire	$(\lambda u)' = \lambda u'$
Dérivée du produit	(uv)' = u'v + uv'
Dérivée de l'inverse	$\left(\frac{1}{v}\right)' = -\frac{v'}{v^2}$
Dérivée du quotient	$\left(\frac{u}{v}\right)' = \frac{u'v - uv'}{v^2}$
Dérivée de la puissance	$(u^n)' = nu'u^{n-1}$
Dérivée de la racine	$\left(\sqrt{u}\right)' = \frac{u'}{2\sqrt{u}}$

Application 1

Déterminer la fonctions dérivée de $f(x) = (5x^2 + 1)(3x - 1)$

On utilise la formule :
$$(u \times v)' = u' \times v + u \times v'$$

 $f'(x) = ((5x^2 + 1)(3x - 1))' = (5x^2 + 1)' \times (3x - 1) + (5x^2 + 1) \times (3x - 1)'$
 $f'(x) = 10x \times (3x - 1) + 3(5x^2 + 1) = 30x^2 - 10x + 15x^2 + 3$
 $f'(x) = 45x^2 - 10x + 3$

Application 2

Déterminer la fonction dérivée de $f(x) = (3x+4)^3$

On utilise la formule :
$$(u^n)' = nu^{n-1} \times u'$$

 $f'(x) = ((3x+4)^3)' = 3 \times (3x+4)^{3-1} \times (3x+4)' = 3 \times 3 \times (3x+4)^{3-1} = 9(3x+4)^2$

Application 3

Déterminer la fonction dérivée de $f(x) = \frac{1}{\sin x}$

Professeur	Bahloul Khalid (+212) 622-17-65-52
Chapitre	Dérivation (l'essentiel du cours + applications)
Niveaux	1 ^{ère} et 2 ^{ème} Bac International et mission française

On utilise la formule :
$$\left(\frac{1}{u}\right)' = -\frac{u'}{u^2}$$

$$f'(x) = \left(\frac{1}{\sin x}\right)' = -\frac{(\sin x)'}{(\sin x)^2} = -\frac{\cos x'}{(\sin x)^2}$$

Application 4

Déterminer la fonction dérivée de $f(x) = \sqrt{x^2 + 8x}$

On utilise la formule :
$$(\sqrt{u})' = \frac{u'}{2\sqrt{u}}$$

$$f'(x) = \left(\sqrt{x^2 + 8x}\right)' = \frac{\left(x^2 + 8x\right)'}{2\sqrt{x^2 + 8x}} = \frac{2x + 8}{2\sqrt{x^2 + 8x}} = \frac{x + 4}{\sqrt{x^2 + 8x}}$$

Application 5

Soit
$$f(x) = \sqrt{x^2 - x}$$

Etudier le domaine de dérivation de f et déterminer sa fonction dérivée.

Solution: $D_f =]-\infty;0] \cup [1;+\infty[$

On a :
$$f(x) = \sqrt{u(x)}$$
 avec $u(x) = x^2 - x$

Et on a :
$$u(x) \succ 0 \quad \forall x \in D_f - \{0,1\}$$

Donc f est dérivables $\sup D_f - \{0;1\}$

$$\forall x \in D_f - \{0;1\} : f'(x) = \left(\sqrt{x^2 - x}\right)' = \frac{\left(x^2 - x\right)'}{2\sqrt{x^2 - x}} = \frac{2x - 1}{2\sqrt{x^2 - x}}$$

IV- Applications de la dérivation

4-1/ Monotonie d'une fonction et signe de sa fonction dérivée

Professeur	Bahloul Khalid (+212) 622-17-65-52
Chapitre	Dérivation (l'essentiel du cours + applications)
Niveaux	1 ^{ère} et 2 ^{ème} Bac International et mission française

Soit f une fonction dérivable sur un intervalle I.

- Si f est croissante sur l'intervalle I, alors : $(\forall x \in I) f'(x) \geq 0$
- Si f est décroissante sur l'intervalle I, alors : $(\forall x \in I) f'(x) \leq 0$
- Si f est constante sur l'intervalle I, alors : $(\forall x \in I) f'(x) = 0$

(on utilisant le terme strictement on modifiera le symbole "supérieur ou égale / inferieur ou égale " par le symbole < ou >)

4-2/ Extremums d'une fonction dérivable

Soit f une fonction dérivable sur un intervalle ouvert I et $a \in I$.

Si f admet un extremum local au point a, alors f'(a) = 0.

V- Équations différentielle y " $+w^2y=0$

Définition

Soit w un nombre réel non nul.

L'équation y " $+w^2y=0$ où l'inconnue est une fonction y telle que y " est sa dérivée seconde est appelée équation différentielle.

Toute fonction f deux fois dérivable sur \mathbb{R} et vérifie l'égalité f " $(x) + w^2 f(x) = 0$, pour tout $x \in \mathbb{R}$ est appelée solution de l'équation différentielle y " $+w^2y = 0$.

Propriété

Soit w un nombre réel non nul.

La solution générale de l'équation différentielle y " $+w^2y=0$ est l'ensemble des fonctions y définies sur \mathbb{R} par $x\mapsto y\left(x\right)=\alpha\cos\left(wx\right)+\beta\sin\left(wx\right)$ où $\alpha,\beta\in\mathbb{R}$