Professeur	Bahloul Khalid (+212) 622-17-65-52
Chapitre	Généralités sur les fonctions (l'essentiel du cours + applications)
Niveaux	1 ^{ère} bac FR et BIOF

Généralités sur les fonctions

1) Définitions d'une fonction Domaine de définitions

Activité

- Qui peut nous rappeler tout ce que vous avez vu sur les fonctions
 - Domaine de définition
 - Taux d'accroissement et monotonie
 - o Parité
 - La fonction inverse
 - La fonction homographique
 - La fonction polynôme
- Donnez les domaines de définition des fonctions suivantes

1)
$$f(x) = 3x^2 - x + 1$$
. 2) $f(x) = \frac{x^3}{2x - 4}$.

3)
$$f(x) = \frac{2x^4}{x^2 - 4}$$
. 4) $f(x) = \frac{7x - 1}{x^3 - 2x}$.

5)
$$f(x) = \sqrt{-3x+6}$$
. 6) $f(x) = \frac{x-5}{2x^2-5x-3}$.

7)
$$f(x) = \sqrt{x^2 - 3x + 2}$$
. 8) $f(x) = \sqrt{\frac{-3x + 9}{x + 1}}$.

9)
$$f(x) = \frac{x+1}{\sqrt{-2x^2+x+3}}$$
. 10) $f(x) = \frac{|x-5|}{x^2+1}$.

Définition

Pour une fonction f donnée, l'ensemble de tous les nombres réels qui ont une image calculable par cette fonction est appelé ensemble de définition de la fonction f, que l'on notera $D_{\rm f}$

2) Fonctions paires et Fonctions impaires

- 2.1 Définitions
- a. Ensemble de définition centré

On dit que D_f est un ensemble de définition centré si et et seulement si :

Professeur	Bahloul Khalid (+212) 622-17-65-52
Chapitre	Généralités sur les fonctions (l'essentiel du cours + applications)
Niveaux	1 ^{ère} bac FR et BIOF

Pour tout réel x, si $x \in D_f$, alors $-x \in D_f$

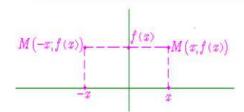
Exemples	Exemples d'ensembles
d'ensembles centrés	non centrés
]-∞,+∞[]0,+∞[
°* (ou °-{0})	°-{1}
° -{-1; 1}	° -{-1; 2}
[-4; 4]	[-4; 3]

2.2. Fonction paire

On dit qu'une fonction f est paire si et seulement si :

1. Son ensemble de définition est centré

2. Pour tout réel
$$x$$
 de D_f , on a : $f(-x) = f(x)$



Exemples

$$x \mapsto |x|$$
 $x \mapsto \cos(x)$ $f(x) = kx^n$ (avec n paire)

Remarques importantes

- l'opposée d'une fonction paire est une fonction paire,
- l'inverse d'une fonction paire est une fonction paire,
- la somme de deux fonctions paires est une fonction paire,
- le produit de 2 fonctions paires ou de 2 fonctions impaires est une fonction paire.

2.3. Fonction impaire

On dit qu'une fonction f est impaire si et seulement si :

1. Son ensemble de définition est centré,

Professeur	Bahloul Khalid (+212) 622-17-65-52
Chapitre	Généralités sur les fonctions (l'essentiel du cours + applications)
Niveaux	1 ^{ère} bac FR et BIOF

2. Pour tout réel x de D_f , on a : f(-x) = -f(x)

Exemples

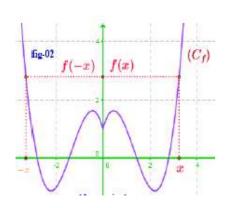
$$x \mapsto \sin(x)$$
 $x \mapsto kx^n$ (avec n impaire)

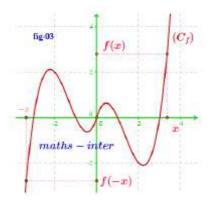
Remarques importantes

- l'opposée d'une fonction impaire est une fonction impaire,
- l'inverse d'une fonction impaire est une fonction impaire,
- la somme de deux fonctions impaires est une fonction impaire,

2.4 le graphe et la parité de la fonction

- la courbe représentative d'une fonction paire est symétrique par à l'axe des ordonnées.
- la courbe représentative d'une fonction impaire est symétrique par rapport à l'origine





Application

Etudier la parité et le domaine de définition des fonctions suivantes

$$f(x) = 3x^2 - 5$$
 $h(x) = 2x^3 + x^2$

$$g(x) = \frac{3}{x}$$
 $t(x) = \frac{x}{x-2}$

3) Les variations d'une fonction

Activité

- A votre avis qu'elle est l'utilité d'étudier les fonctions ?

Professeur	Bahloul Khalid (+212) 622-17-65-52
Chapitre	Généralités sur les fonctions (l'essentiel du cours + applications)
Niveaux	1 ^{ère} bac FR et BIOF

Soit f une fonction et D_f son domaine de définition et soit I un intervalle inclus dans D_f

1. f est croissante sur I signifie que :

Si
$$x_1 \in I$$
 et $x_2 \in I$ tq $x_1 \prec x_2$ alors $f(x_1) \leq f(x_2)$

f est strictement croissante sur I signifie que :

Si
$$x_1 \in I$$
 et $x_2 \in I$ tq $x_1 \prec x_2$ alors $f(x_1) \prec f(x_2)$

2. f est décroissante sur l signifie que :

Si
$$x_1 \in I$$
 et $x_2 \in I$ tq $x_1 \prec x_2$ alors $f(x_1) \ge f(x_2)$

f est strictement décroissante sur I signifie que :

Si
$$x_1 \in I$$
 et $x_2 \in I$ tq $x_1 \prec x_2$ alors $f(x_1) \succ f(x_2)$

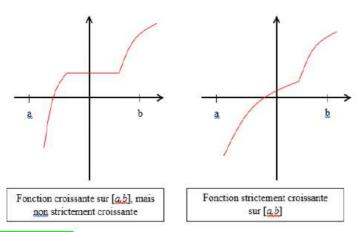
3. f est constante sur I signifie que :

Si
$$x_1 \in I$$
 et $x_2 \in I$ tq $x_1 \prec x_2$ alors $f(x_1) = f(x_2)$

4. f est dite monotone sur I signifie que :

elle est soit croissante ou décroissante sur I

Autrement dit => une fonction croissante conserve les l'ordre



Application:

Etudiez la monotonie des fonctions suivantes en utilisant la définition

Professeur	Bahloul Khalid (+212) 622-17-65-52
Chapitre	Généralités sur les fonctions (l'essentiel du cours + applications)
Niveaux	1 ^{ère} bac FR et BIOF

$$f(x) = 7x - 5$$
$$g(x) = \frac{2}{x}$$

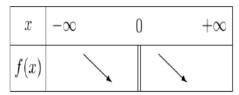
Indication => Prendre $x_1 > x_2$ et comparer les images

Le tableau de variation

Le tableau de variation résume le comportement de la fonction sur tout son domaine de définition

Exemple pour la fonction f(x) = 2/x

(les doubles barres signifient que la fonction n'est pas définie sur cette valeur)



Le taux d'accroissement

Il indique la monotonie apparente de la fonction entre deux abscisses

$$T(x_1;x_2) = \frac{f(x_1) - f(x_2)}{x_1 - x_2}$$

Autrement dit => on considère que la fonction est une droite entre x_1 et x_2 et on calcule son coefficient directeur

Si pour tous x_1 et x_2 d'un intervalle I de D_f

- $T(x_1,x_2) > 0$ alors on dit que f est strictement croissante sur I
- $T(x_1,x_2) < 0$ alors on dit que f est strictement décroissante sur I
- $T(x_1,x_2) = 0$ alors on dit que f est constante sur I

Application

$$f(x) = 3x^2 + 2$$

1-Domaine de définition, Parité, Monotonie, Tableau de variation

x	$-\infty$ 0 $+\infty$
f(x)	

Professeur	Bahloul Khalid (+212) 622-17-65-52
Chapitre	Généralités sur les fonctions (l'essentiel du cours + applications)
Niveaux	1 ^{ère} bac FR et BIOF

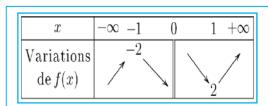
Important

Si une fonction est paire ou impaire il suffit d'étudier sa monotonie $\operatorname{sur} \ ^{D_f} \cap \mathbb{R}^+ \quad \text{L'autre partie est déduite par symétrie sur le tableau de variation}$

Application

$$f(x) = x + \frac{1}{x}$$

- 1- Domaine de définition
- 2-Parité
- 3-Monotonie
- 4-Tableau de variation



Indication => après factorisation de f(x1)-f(x2) faire une disjonction des cas]0,1[et]1,+l'infini[

Les variations des fonctions $f+\alpha$ et αf

Propriété: Soit f une fonction numérique définie sur un intervalle I et $\alpha \in \mathbb{R}^*$

- Si $\alpha \in \mathbb{R}^{*+}$ alors les fonctions f et α f ont les mêmes variations sur I
- Si $\alpha \in \mathbb{R}^{*-}$ alors les fonctions f et α f ont des variation opposées sur I
- •f et α+f ont les mêmes variations sur I

4) comparaison de deux fonctions

- On dit que deux fonction f et g sont égales si et seulement si

$$D_f = D_g$$
 et Pour tout $x \in D_f$: f (x) = g(x)

Application (comparez)

$$f(x) = \sqrt{\frac{x-1}{x+3}}$$
 et $g(x) = \frac{\sqrt{x-1}}{\sqrt{x+3}}$

Professeur	Bahloul Khalid (+212) 622-17-65-52
Chapitre	Généralités sur les fonctions (l'essentiel du cours + applications)
Niveaux	1 ^{ère} bac FR et BIOF

Réponse :

$$D_f =]-\infty; -3[\cup [1; +\infty[D_g = [1; +\infty[$$

Donc pas égales

Définitions

Soit I un intervalle et soient f et g deux fonctions définies Sur I.

1)f est inférieure à g sur l'Iorsque : $f(x) \le g(x)$

pour tout $x \in I$. On note : $f \le g$ Sur I.

2)f est positive sur I lorsque : $f(x) \ge 0$ pour tout

 $x \in I$. On note : $f \ge 0$ sur I.

3)f est **majorée** sur l lorsqu'il existe un réel M

tel que : $f(x) \le M$ pour tout $x \in I$

4)f est **minorée** sur I lorsqu'il existe un réel m

tel que : $m \le f(x)$ pour tout $x \in I$

5)f est bornée sur l lorsqu'il existe des réels

Met m tels que : $m \le f(x) \le M \ \forall x \in I$.

(f est majorée et minorée)

Interprétation graphique :

1) $f(x) \le g(x)$ pour tout $x \in I$ ssi La courbe

 $\left(C_{g}\right)$ de la fonction g est au-dessus de La

courbe $\left(C_{f}\right)$ de f sur l'intervalle I

2) $f(x) \ge 0$ pour tout $x \in I$ ssi La courbe (C_f)

de la fonction f est au-dessus de l'axe des abscisse sur l'intervalle I

Application (comparez)

$$f(x) = x+1 \text{ et } g(x) = x^2+x+2$$

Solution : $D_f = D_g = \mathbb{R}$

$$g(x)-f(x)=x^2+x+2-(x+1)=x^2+1 > 0$$

 $\forall x \in \mathbb{R}$

Donc: $f(x) \prec g(x) \quad \forall x \in \mathbb{R} \text{ donc } f \prec g$

Professeur	Bahloul Khalid (+212) 622-17-65-52
Chapitre	Généralités sur les fonctions (l'essentiel du cours + applications)
Niveaux	1 ^{ère} bac FR et BIOF

Application (étudiez le signe de cette fonction)

$$f(x) = \frac{(3x+1)(2-x)}{4x^2-1}$$

Solution:

$$f(x) \ge 0 \quad \text{ssi } x \in \left] -\frac{1}{2}; -\frac{1}{3} \right] \cup \left] \frac{1}{2}; 2 \right] \text{ donc } f \ge 0$$

$$\forall x \in \left] -\frac{1}{2}; -\frac{1}{3} \right] \cup \left[\frac{1}{2}; 2 \right]$$

$$f(x) \le 0 \quad \text{ssi } x \in \left] -\infty; -\frac{1}{2} \right[\cup \left[-\frac{1}{3}; \frac{1}{2} \right[\cup [2; +\infty[$$

Application (montrez que cette fonction est majorée)

$$f(x) = -x^2 + x$$

Solution: On met la fonction sous la forme canonique:

 $f(x) = -x^2 + x = -(x^2 - x) = -\left(\left(x - \frac{1}{2}\right)^2 - \frac{1}{4}\right) = -\left(x - \frac{1}{2}\right)^2 + \frac{1}{4}$

On a:
$$-\left(x - \frac{1}{2}\right)^2 \le 0$$
 donc $-\left(x - \frac{1}{2}\right)^2 + \frac{1}{4} \le \frac{1}{4}$

donc: $f(x) \le \frac{1}{4} \quad \forall x \in \mathbb{R}$

La fonction f est donc majorée sur \mathbb{R} par $M = \frac{1}{4}$

Application (quelles sont les valeurs de m pour que $D_f = R$)

$$f(x) = \frac{x-1}{x^2 + x + m} \quad \text{avec} \quad m \in \mathbb{R}$$

Solution:

1)
$$D_f = \mathbb{R} \iff \forall x \in \mathbb{R} : x^2 + x + m \neq 0$$

 $x^2 + x + m \neq 0$ ssi $\Delta = b^2 - 4ac = 1 - 4m < 0$
Ssi $m > \frac{1}{4}$

5) I es extremums d'une fonction

Soit f une fonction numérique définie sur un intervalle ouvert I et soit $a \in I$

Professeur	Bahloul Khalid (+212) 622-17-65-52
Chapitre	Généralités sur les fonctions (l'essentiel du cours + applications)
Niveaux	1 ^{ère} bac FR et BIOF

- \blacktriangleright Dire que f(a) est une valeur maximale de f sur I (ou f(a) est un maximum de f sur I) ssi pour tout que $x \in I$: $f(x) \le f(a)$
- ightharpoonup Dire que $f\left(a\right)$ est une valeur minimale de f sur I (ou $f\left(a\right)$ est un minimum de f sur I) ssi pour tout $x \in I$: $f\left(x\right) \ge f\left(a\right)$

Trouvez un minimum pour la fonction

$$f(x) = 5x^2 + 3$$

$$D_f = \mathbb{R}$$

Solution

On a pour tout $x \in \mathbb{R}$ $x^2 \ge 0$ Donc $5x^2 \ge 0$ car $5 \ge 0$

Par suite $5x^2 + 3 \ge 3$ et on a f(0) = 3

Donc pour tout $x \in \mathbb{R}$ $f(x) \ge f(0)$

d'où f(0)=3 est un minimum absolue de f sur \mathbb{R}

Application

$$f(x) = \frac{2x^2 + 3}{x^2 + 1}$$

- 1)Déterminer D_f
- 2) a) Démontrer que f est majorée par 3.
- b) est ce que 3 est une valeur maximale de f?
- 3) a) Démontrer que f est minorée par 2.
- b) est ce que 2 est une valeur minimale de f. ?

Professeur	Bahloul Khalid (+212) 622-17-65-52
Chapitre	Généralités sur les fonctions (l'essentiel du cours + applications)
Niveaux	1 ^{ère} bac FR et BIOF

Solution:

1)
$$D_f = \{x \in \mathbb{R} / x^2 + 1 \neq 0\}$$

 $x^2 + 1 = 0 \Leftrightarrow x^2 = -1$ pas de solution dans \mathbb{R} donc

$$D_f = \mathbb{R}$$

2) a)soit $\forall x \in \mathbb{R}$

$$f(x)-3=\frac{2x^2+3}{x^2+1}-3=\frac{2x^2+3-3(x^2+1)}{x^2+1}=\frac{2x^2+3-3x^2-3}{x^2+1}$$

Donc $f(x)-3=\frac{-x^2}{x^2+1} \le 0$ par suite $f(x) \le 3 \quad \forall x \in \mathbb{R}$

f est donc majorée sur \mathbb{R} par M=3

b) on remarque que : f(0)=3

donc $f(x) \le f(0) \quad \forall x \in \mathbb{R}$

Donc 3 est une valeur maximale de f

2) a) soit
$$\forall x \in \mathbb{R}$$

$$f(x)-2=\frac{2x^2+3}{x^2+1}-2=\frac{2x^2+3-2(x^2+1)}{x^2+1}=\frac{2x^2+3-2x^2-2}{x^2+1}$$

Donc $f(x)-2=\frac{1}{x^2+1} > 0$ par suite:

 $0 \prec f(x) \quad \forall x \in \mathbb{R}$

par suite f est donc minorée sur $\mathbb R$ par m=2

b) on remarque que : $f(x) \succ 2 \ \forall x \in \mathbb{R}$

2 n'est pas donc une valeur minimale de f

conclusion: $2 \prec f(x) \le 3 \quad \forall x \in \mathbb{R}$

f est donc bornée sur $\mathbb R$.

6) études et représentations graphiques des fonctions

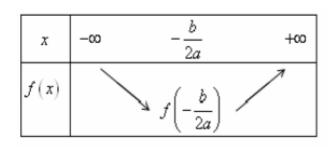
$$f(x) = ax^2 + bx + c$$
 et $a \neq 0$

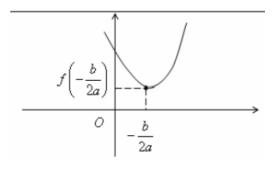
1) La courbe représentative est une parabole de sommet $W(\alpha, \beta)$

et d'axe de symétrie la droite $x = \alpha$ $\alpha = \frac{-b}{2a}$

2) Les variations de f

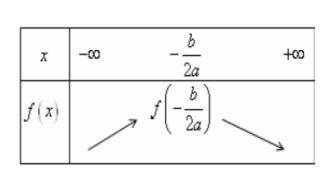
$$\underline{\operatorname{Si}} a \succ 0$$

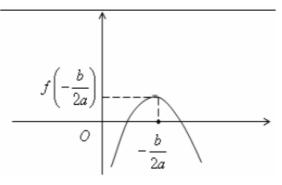




Professeur	Bahloul Khalid (+212) 622-17-65-52
Chapitre	Généralités sur les fonctions (l'essentiel du cours + applications)
Niveaux	1 ^{ère} bac FR et BIOF

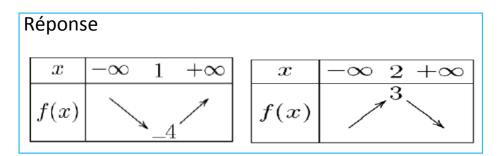
$$\underline{\text{Si}} a \prec 0$$





Application (étudiez les fonctions suivantes)

$$f(x) = 2x^2 - 4x - 2$$
 $g(x) = -\frac{1}{2}x^2 + 2x + 1$



7) études et représentations graphiques des fonctions homographiques

$$x \xrightarrow{f} \frac{ax + b}{cx + d}$$
 $a \neq 0$ et $c \neq 0$

1) La courbe représentative est une hyperbole de centre

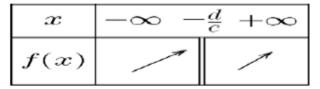
$$W\left(-\frac{d}{c}; \frac{a}{c}\right)$$

et d'asymptotes les droites

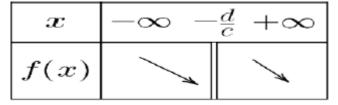
$$x = -\frac{d}{c}$$
 et $y = \frac{a}{c}$

Professeur	Bahloul Khalid (+212) 622-17-65-52
Chapitre	Généralités sur les fonctions (l'essentiel du cours + applications)
Niveaux	1 ^{ère} bac FR et BIOF

si
$$\Delta = \begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc > 0$$



$$\operatorname{Si} \Delta = \begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc < 0$$



$$f(x) = \frac{2x+1}{x-1}$$

Réponse

on a $f(x) \in \mathbb{R}$ ssi $x-1 \neq 0$ ssi $x \neq 1$

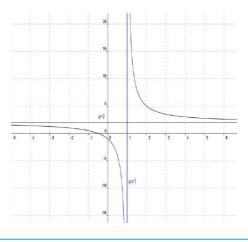
Donc
$$D_f = \mathbb{R} - \{1\}$$
 $\Delta = \begin{vmatrix} 2 & 1 \\ 1 & -1 \end{vmatrix} = -2 - 1 = -3 < 0$

• Donc le tableau de variations de

$$x \longrightarrow \frac{2x+1}{x-1}$$

x	$-\infty$	1	+∞
f(x)		\ \	`

-2	1-	0	1	2	3	4
1	1/2	-1		5	7/2	3



 (C_f) est l'hyperbole de centre W(1;2) et d'asymptotes les droites d'équations respectives x=1 et y=2

Professeur	Bahloul Khalid (+212) 622-17-65-52
Chapitre	Généralités sur les fonctions (l'essentiel du cours + applications)
Niveaux	1 ^{ère} bac FR et BIOF

$$g(x) = \frac{-x}{x-2}$$

Réponse

on a
$$g(x) \in \mathbb{R}$$
 ssi $x-2 \neq 0$ ssi $x \neq 2$
Donc $D_g = \mathbb{R} - \{2\}$

$$\Delta = \begin{vmatrix} -1 & 0 \\ 1 & -2 \end{vmatrix} = 2 \succ 0$$

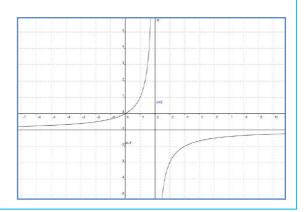
• Donc le tableau de variations

	x	$-\infty$	$2 + \infty$
f	(x)	1	1

• Représentation graphique

-1	0	1	2	3	4	5
-1/3	0	1		-3	-2	-5/3

 (C_f) est l'hyperbole de centre W(2;-1) et d'asymptotes les droites d'équations respectives x=2 et y=-1



8) études et représentations de la fonction x³

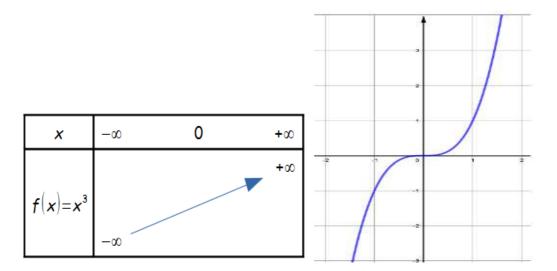
1-
$$D_f = R$$

2- c'est une fonction impaire donc on va étudier la fonction sur

$$[0, +\infty[$$
 a>b => $a^3 > b^3$ donc f croissante sur $[0, +\infty[$

Par symétrie centrale on détermine la deuxième partie du tableau de variation et de la courbe

Professeur	Bahloul Khalid (+212) 622-17-65-52
Chapitre	Généralités sur les fonctions (l'essentiel du cours + applications)
Niveaux	1 ^{ère} bac FR et BIOF



9) études et représentations de la fonction $f(x) = \sqrt{x}$

$$D_f = R^+$$

Soient u et v deux réels positifs ou nuls

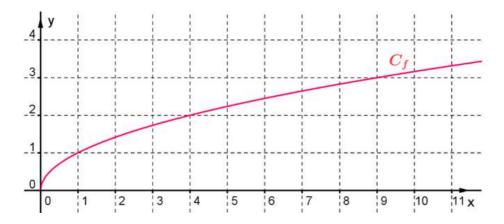
Comparons f(u) et f(v)

On sait que $(\sqrt{u}-\sqrt{v})(\sqrt{u}+\sqrt{v})=\sqrt{u}^2-\sqrt{v}^2=u-v$ d'après la définition de f Donc $f(u)-f(v)=\frac{u-v}{\sqrt{u}+\sqrt{v}}$

Donc
$$f(u) - f(v) = \frac{u}{\sqrt{u} + \sqrt{v}}$$

d'où f(u) – f(v) possède le même signe que u – v (car $\sqrt{u}+\sqrt{v}\geq 0$ par définition)

x	0	+ ∞
$f(x) = \sqrt{x}$	0	+ ∞

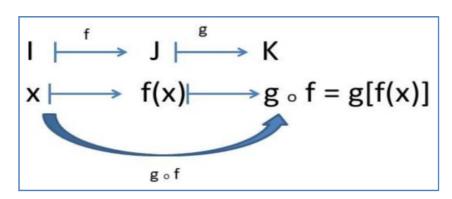


Professeur	Bahloul Khalid (+212) 622-17-65-52
Chapitre	Généralités sur les fonctions (l'essentiel du cours + applications)
Niveaux	1 ^{ère} bac FR et BIOF

10) La composée de deux fonctions

Soit fune fonction définie sur un intervalle I et prenant ses valeurs dans un intervalle J.

Soit g une fonction définie sur J et prenant ses valeurs dans un intervalle K. On peut alors construire la fonction qui à tout nombre réel X de J associe g[f(X)]. Cette fonction est appelée la fonction composée de J par J et elle se note



Application

$$f(x)=x^2-2x+3$$
 et $g(x)=2x+1$
Déterminer : $g \circ f$ et $f \circ g$

Solution :on a :
$$D_f = \mathbb{R}$$
 et $D_g = \mathbb{R}$ donc $D_{g \circ f} = \mathbb{R}$ et $D_{f \circ g} = \mathbb{R}$ ($g \circ f$)(x) = $g(f(x))$ = $g(x^2 - 2x + 3)$ = $2(x^2 - 2x + 3) + 1$ ($g \circ f$)(x) = $2x^2 - 4x + 7$ ($f \circ g$)(x) = $f(g(x))$ = $f(2x + 1)$ = $(2x + 1)^2 - 2(2x + 1) + 3$ ($f \circ g$)(x) = $4x^2 + 4x + 1 - 4x - 2 + 3 = 4x^2 + 2$

Application

$$f(x) = 3x + 4$$
 et $g(x) = \frac{1}{x+1}$

- 1) Déterminer $D_{g \circ f}$
- 2) déterminer : $(g \circ f)(x)$

Professeur	Bahloul Khalid (+212) 622-17-65-52
Chapitre	Généralités sur les fonctions (l'essentiel du cours + applications)
Niveaux	1 ^{ère} bac FR et BIOF

$$\begin{aligned} & \textbf{Solution}: 1) D_{g \circ f} = \left\{ x \in \mathbb{R} / x \in D_f etf(x) \in D_g \right\} \\ & \textbf{On a } D_f = \mathbb{R} \quad \text{et } D_g = \mathbb{R} - \{-1\} \quad \text{donc} \\ & D_{g \circ f} = \left\{ x \in \mathbb{R} / x \in \mathbb{R} etf(x) \neq -1 \right\} \\ & f(x) = -1 \Leftrightarrow 3x + 4 = -1 \Leftrightarrow 3x = -5 \Leftrightarrow -\frac{5}{3} = x \\ & \textbf{donc}: D_{g \circ f} = \mathbb{R} - \left\{ -\frac{5}{3} \right\} \\ & \textbf{2) on a } : \quad D_f = \mathbb{R} \quad \text{et } D_g = \mathbb{R} - \{-1\} \\ & \textbf{et } D_{g \circ f} = \mathbb{R} - \left\{ -\frac{5}{3} \right\} \end{aligned} \qquad \qquad \begin{aligned} & (g \circ f)(x) = g(f(x)) = g(3x + 4) = \frac{1}{3x + 4 + 1} \\ & (g \circ f)(x) = \frac{1}{3x + 5} \end{aligned}$$

Exprimer les fonctions suivantes à l'aide de fonctions élémentaires :

1)
$$h_1(x) = \frac{1}{3x-1}$$
 2) $h_2(x) = \sqrt{x+3}$

Solution: 1)
$$h_1(x) = \frac{1}{3x-1}$$
 on a : $h_1(x) = (g \circ f)(x)$
avec $f(x) = 3x-1$ et $g(x) = \frac{1}{x}$
2) $h_2(x) = \sqrt{x+3}$ on a : $h_2(x) = (g \circ f)(x)$ avec $f(x) = x+3$ et $g(x) = \sqrt{x}$

Variations d'une fonction composée

Théorème:

Soit une fonction f définie sur un intervalle I et une fonction g définie sur f (I).

- \Rightarrow Si f et g ont même variation respectivement sur I et f (I) alors la fonction $g \circ f$ Est croissante sur I.
- \Rightarrow Si f et g ont des variations opposées respectivement sur I et f (I) alors $g \circ f$ est décroissante sur I.

Démonstration

a. f et g sont croissantes :

Comme f est strictement croissante sur I, si a < b alors f(a) < f(b) (on conserve l'ordre !) Or g est strictement croissante sur I d'où $f(a) < f(b) \Rightarrow g[f(a)] < g[f(b)]$ (on conserve l'ordre !)

Professeur	Bahloul Khalid (+212) 622-17-65-52
Chapitre	Généralités sur les fonctions (l'essentiel du cours + applications)
Niveaux	1 ^{ère} bac FR et BIOF

b. f et g sont décroissantes :

Comme f est strictement décroissante sur I, si a < b alors f(a) > f(b) (on change l'ordre!) Or g est strictement décroissante sur J d'où $f(a) > f(b) \Rightarrow g[f(a)] < g[f(b)]$ (on change l'ordre!)

a. f est croissante et g décroissante :

Comme f est strictement croissante sur I, si a < b alors f(a) < f(b) (on conserve l'ordre!) Or g est strictement décroissante sur J d'où $f(a) < f(b) \Rightarrow g[f(a)] > g[f(b)]$ (on change l'ordre!)

Application décomposer une fonction en fonctions élémentaires et en déduire sa monotonie

$$f(x) = -5x^2 + 7$$
 [0; +\infty]

Réponse

On va décomposer une fonction en fonctions élémentaire :

$$v(x) = -5x + 7$$
 et $u(x) = x^2$

La fonctions $f = v \circ u$

La fonction u est croissante sur $[0;+\infty]$ et

$$u(x) = x^2 \in [0; +\infty[$$
 et I

v est décroissante sur

[0;+∞ Donc d'après le théorème des fonctions composées, $f = v \circ u$ est décroissante sur 0;+∞

Application2

$$h(x) = \sqrt{1-x}$$
 sur $]-\infty;1]$

Solution: 1) La fonction h se décompose de cette façon $h = g \circ f$

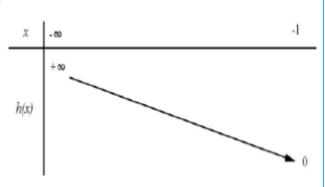
on a alors : f(x) = 1 - x et $g(x) = \sqrt{x}$

2) On sait que:

 \Rightarrow g est croissante sur $f(]-\infty;1])=[0;+\infty[$

Donc La fonction h décroissante sur $]-\infty;1]$

On a alors le tableau de variation suivant



Professeur	Bahloul Khalid (+212) 622-17-65-52
Chapitre	Généralités sur les fonctions (l'essentiel du cours + applications)
Niveaux	1 ^{ère} bac FR et BIOF

11) fonctions périodiques

On dit que f est périodique de périodique T si les deux conditions suivantes sont vérifiées :

a)
$$\forall x \in D$$
 on a $x+T \in D$

b)
$$\forall x \in D$$
 on a $f(x+T) = f(x)$

Exemples

- Toute fonction constante est periodique et tout réel non nul en est une période.
- La fonction partie entiere x E(x) est periodique de periode 1
- La fonction sin(x) et cos(x) sont de periode 2π

Application

Montrer que la fonction

$$f: x \to x - E(x)$$
 est périodique de période 1.

Rappel sur la fonction partie entière

$$\left\{egin{array}{l} \lfloor x
floor \in \mathbb{Z} \ \lfloor x
floor \leqslant x < \lfloor x
floor + 1 \end{array}
ight.$$

Solution : $D_f = \mathbb{R}$

a) $\forall x \in \mathbb{R}$ on a $x+1 \in \mathbb{R}$

b) $\forall x \in \mathbb{R}$ on a:

$$f(x+1) = x+1-E(x+1) = x+1-E(x)-1 = f(x)$$

L'application f est donc périodique de période 1.

Application

Quelle est la période des fonctions suivantes :

Professeur	Bahloul Khalid (+212) 622-17-65-52			
Chapitre	Généralités sur les fonctions (l'essentiel du cours + applications)			
Niveaux	1 ^{ère} bac FR et BIOF			

1)
$$f: x \to \sin(4x-1)$$
 2) $g: x \to \cos(5x)$

Solution :1)
$$T = \frac{2\pi}{a} = \frac{2\pi}{4} = \frac{\pi}{2}$$
 2) $T = \frac{7\pi}{5}$

La périodicité permet de réduire l'étude des variations d'une fonction à un intervalle de longueur égale à la période

12) positions relatives des courbes

A retenir

- les solutions de l'équation f(x) = g(x) sont les abscisses des points D'intersection de (C_f) et de (C_g) .
- les solutions de l'inéquation $f(x) \ge g(x)$ sont les abscisses des points de (C_f) situées au-dessus de (C_g) .
- les solutions de l'inéquation $f(x) \le g(x)$ sont les abscisses des points de (C_f) situées au-dessous de (C_g) .

Un cas particulier

$$f(x) = m$$
 $f(x) \ge m$

- Les solutions de l'équation f(x) = m sont f(x) = m sont f(x) = m sont f(x) = m abscisses des points d'intersection de f(x) = m avec la droite d'équation f(x) = m
- Les solutions de l'inéquation $f(x) \ge m$ sont les abscisses des points de (C_f) situés au-dessus de la droite d'équation y = m.

Application Soient f et g les deux fonctions définies sur R par : $f(x) = x^2 - 3x - 4$ et g(x) = 3x + 12

Professeur	Bahloul Khalid (+212) 622-17-65-52
Chapitre	Généralités sur les fonctions (l'essentiel du cours + applications)
Niveaux	1 ^{ère} bac FR et BIOF

- 1) Tracer Les courbes (C_f) et (C_g)
- 2) Résoudre graphiquement et algébriquement l'équation f(x) = g(x)
- 3) Résoudre graphiquement et algébriquement l'inéquation $f(x) \ge g(x)$

Réponses : 1) Les courbes représentatives $\left(C_f\right)$ (en rouge) et $\left(C_g\right)$ (en bleu) sont données dans le repére ci-dessous

2) a) résolution graphique de l'équation
$$f(x) = g(x)$$

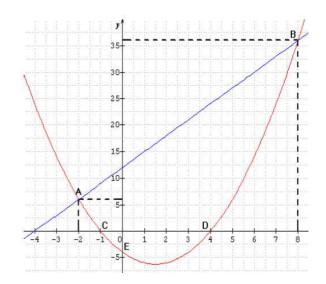
Il suffit de chercher les abscisses des points d'intersection des courbes $\left(C_f\right)$ et $\left(C_g\right)$

On a donc x = -2 et x = 8 donc $S = \{-2, 8\}$

$$f(x) = g(x)$$

$$f(x) = g(x)$$
 ssi $x^2 - 3x - 4 = 3x + 12$ ssi $x^2 - 6x - 16 = 0$

$$a=1$$
 et $b=-6$ et $c=-16$



$$\Delta = b^2 - 4ac = (-6)^2 - 4 \times 1 \times (-16) = 36 + 64 = 100 = (10)^2 > 0$$

$$x_1 = \frac{-b + \sqrt{\Delta}}{2a}$$
 et $x_2 = \frac{-b - \sqrt{\Delta}}{2a}$

$$x_1 = \frac{-(-6) + \sqrt{100}}{2 \times 1} = \frac{6 + 10}{2} = \frac{16}{2} = 8$$
 et

$$x_2 = \frac{-(-6) - \sqrt{100}}{2 \times 1} = \frac{6 - 10}{2} = \frac{-4}{2} = -2$$

donc
$$S = \{-2, 8\}$$

Les racines sont :
$$x_1 = 8$$
 et $x_2 = -2$

x	$-\infty$	-2		8	$+\infty$
$x^2-6x-16$	+	þ	_	þ	+

Donc
$$S =]-\infty; -2[\cup]8; +\infty[$$

3) a) résolution graphique de l'inéquation
$$f(x) \succ g(x)$$

La courbe (C_f) est au-dessus de (C_g) si $x\in]-\infty;-2[\,\cup\,]8;+\infty[$

Donc
$$S =]-\infty; -2[\cup]8; +\infty[$$

b) résolution algébrique de l'inéquation $f\left(x\right)\succ g\left(x\right)$

$$f(x) \succ g(x)$$
 ssi $x^2 - 3x - 4 \succ 3x + 12$ ssi $x^2 - 6x - 16 \succ 0$