Professeur	Bahloul Khalid (+212) 622-17-65-52
Chapitre	Rotation dans le plan (l'essentiel du cours + applications)
Niveaux	1 ^{ère} bac BIOF science SE et SM

La rotation dans le Plan

I- Rotation et rotation réciproque

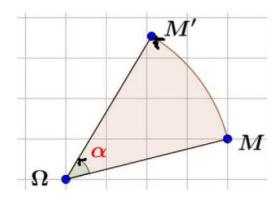
1-1/ Rotation

Soit Ω un point du plan orienté dans le sens direct et $\alpha \in \mathbb{R}$.

La rotation de centre Ω et d'angle α est la transformation du plan, qui à tout point M du plan associe le point M' défini par :

• Si
$$M = \Omega$$
 alors : $M' = \Omega$

$$ullet ext{ Si } M
eq \Omega ext{ alors } : \left\{ egin{aligned} \widehat{\Omega M} &= \Omega M' \ \widehat{\Omega M'}, \widehat{\Omega M'} \end{aligned}
ight\} \equiv lpha \left[2\pi
ight]$$



Formule analytique d'une rotation

La rotation de centre Ω et d'angle α est notée : $r(\Omega, \alpha)$

$$r(M) = M$$

1-2/ Rotation réciproque

Soit r une rotation de centre O et d'angle α .

La rotation de centre O et d'angle $-\alpha$ est appelée rotation réciproque de r. On la note r^{-1} .

Professeur	Bahloul Khalid (+212) 622-17-65-52
Chapitre	Rotation dans le plan (l'essentiel du cours + applications)
Niveaux	1 ^{ère} bac BIOF science SE et SM

II- Caractérisatiques et propriétés de la rotation

Propriété 1

La rotation conserve:

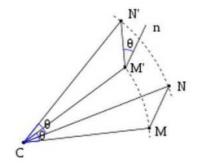
- les longueurs ;
- les angles (l'image d'un angle est un angle de même amplitude) ;
- les parallèles (les images de deux droites parallèles sont deux droites parallèles) ;
- les aires (l'image d'une figure est une figure de même aire).

Propriété 2

Soient M et N deux points du plan distincts.

On note M' et N' leurs images respectives par la rotation de centre C et d'angle θ .

$$MN=M'N' \ \left(\overrightarrow{MN};\overrightarrow{M'N'}
ight)\equiv heta\left[2\pi
ight]$$



Propriété 3

Une rotation transforme trois points alignés dans un ordre en trois points alignés dans le même ordre.

Propriété 4

soient A, B et C trois points du plan distincts.

On note A', B' et C' leurs images respectives par la rotation de centre O et d'angle α .

$$\left(\overrightarrow{AB};\overrightarrow{AC}
ight)=\left(\overrightarrow{A'B'};\overrightarrow{A'C'}
ight)$$

Professeur	Bahloul Khalid (+212) 622-17-65-52
Chapitre	Rotation dans le plan (l'essentiel du cours + applications)
Niveaux	1 ^{ère} bac BIOF science SE et SM

III- Image d'une droite, d'un segment et d'un cercle

Soit r une rotation. Soit A et B deux points tels que $A \neq B$.

- (1) L'image de la droite (AB) par la rotation r est la droite (A'B') telle que r(A) = A' et r(B) = B'.
- (2) L'image du segment [AB] est le segment [A'B'] telle que r(A) = A' et r(B) = B'.
- (3) L'image du cercle F par la rotation r est le cercle F'.

Exercice1: ABCD est un carré de centre O

tel que : $\left(\overline{\overrightarrow{AB}},\overline{\overrightarrow{AD}}\right)$ positif. Soit r_{A} la rotation de

centre A

et d'angle $\frac{\pi}{2}$ et $r_{\scriptscriptstyle O}$ une rotation de centre O et

d'angle lpha .

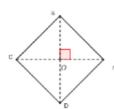
- 1) Déterminer $r_A(A)$; $r_A(B)$; $r_A(D)$,
- 2) Comment choisir α pour avoir $r_O(A) = B$?

Comment choisir α pour avoir $r_{\mathcal{O}}(A) = C$?

Solution :
$$r_{A}\left(A; \frac{\pi}{2}\right)$$
 et

$$r_o(O;\alpha)$$

• $r_A(A) = A$ Car le centre est le seul point invariant.



- $r_A(B) = D \operatorname{Car} \left\{ \begin{matrix} AB = AD \\ \left(\overline{AB}, \overline{AD} \right) \equiv \frac{\pi}{2} [2\pi] \end{matrix} \right.$
- $r_A(D) = B'$ avec B' le symétrique de B par rapport a A

2)
$$r_o(A) = B \Leftrightarrow \alpha = \frac{\pi}{2}$$

$$r_{\alpha}(A) = C \Leftrightarrow \alpha = \pi$$

Exercice2: ABC est un triangle.

On construit à l'extérieur deux triangles ABD et

ACE isocèles et rectangles en A

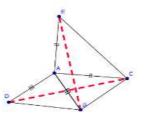
1)Montrer que : BE = CD2)Montrer que : $(BE) \perp (CD)$

Professeur	Bahloul Khalid (+212) 622-17-65-52
Chapitre	Rotation dans le plan (l'essentiel du cours + applications)
Niveaux	1 ^{ère} bac BIOF science SE et SM

Solution :Soit r la rotation

de centre A et d'angle $\frac{\pi}{2}$

On a :
$$\begin{cases} AD = AB \\ \left(\overline{\overrightarrow{AD}, \overrightarrow{AB}}\right) \equiv \frac{\pi}{2} [2\pi] \end{cases}$$



donc: $r(D) = B \bullet$

On a:
$$\begin{cases} AC = AE \\ (\overline{AC, AE}) = \frac{\pi}{2} [2\pi] \end{cases}$$
 donc : $\mathbf{O} r(C) = E$

Et puisque la rotation conserve les distances Alors de \bullet et \bullet en déduit que BE = CD

2)on a
$$r(D) = B$$
 et $r(C) = E$

Donc:
$$(\overline{CD}, \overline{EB}) \equiv \frac{\pi}{2}$$
 par suite: $(BE) \perp (CD)$

Exercice3: ABC est un triangle tel que : $(\overline{\overrightarrow{AB}}, \overline{\overrightarrow{AC}})$

positif. On construit à l'extérieur les carrés ABDE et ACFG

Soit r la rotation de centre A et d'angle $\frac{\pi}{2}$

déterminer : r(E) et r(C)

Et Montrer que : $(\overrightarrow{\overrightarrow{CA}}, \overrightarrow{CE}) = (\overrightarrow{\overrightarrow{GA}}, \overrightarrow{GB})[2\pi]$

Solution:

on a : $\begin{cases} AE = AB \\ \left(\overline{AE}, \overline{AB}\right) = \frac{\pi}{2} [2\pi] \end{cases}$

Donc: $r(E) = B \bullet$

Et on a :
$$\begin{cases} AC = AG \\ (\overline{\overrightarrow{AC}, \overrightarrow{AG}}) = \frac{\pi}{2} [2\pi] \end{cases}$$

Donc: $\Theta r(C) = G$

Et on a : r(A)=A \bullet car A le centre de la rotation

De : \bullet et \bullet en déduit que $(\overline{\overrightarrow{CA},\overrightarrow{CE}}) \equiv (\overline{\overrightarrow{GA},\overrightarrow{GB}})[2\pi]$

Professeur	Bahloul Khalid (+212) 622-17-65-52
Chapitre	Rotation dans le plan (l'essentiel du cours + applications)
Niveaux	1 ^{ère} bac BIOF science SE et SM

Exercice4: ABCD est un carré de centre O

tel que : $(\overline{\overrightarrow{0A}, \overrightarrow{0B}})$ positif.

I et J deux points tels que : $\overrightarrow{AI} = \frac{1}{4} \overrightarrow{AB}$ et

$$\overrightarrow{BJ} = \frac{1}{4}\overrightarrow{BC}$$

Montrer que $(OI) \perp (OJ)$ et OI = OJ

Solution :il suffit de montrer

que : $r(I) = J^{????}$

On pose : r(I) = I'

On a : $\begin{cases} OA = OB \\ \left(\overline{\overrightarrow{OA}}, \overline{OB}\right) = \frac{\pi}{2} [2\pi] \end{cases}$ donc

Et on a : $\overrightarrow{AI} = \frac{1}{4}\overrightarrow{AB}$ donc : $\overrightarrow{BI'} = \frac{1}{4}\overrightarrow{BC}$ • car la

rotation conserve le coefficient de colinéarité de deux vecteurs

Et on sait que : $\overrightarrow{BJ} = \frac{1}{A}\overrightarrow{BC}$

De lacktriangle et lacktriangle en déduit que $\overrightarrow{BI'} = \overrightarrow{BJ}$ donc I' = J

Donc r(I) = J par suite : $\begin{cases} OI = OJ \\ \left(\overline{\overrightarrow{OI}, \overrightarrow{OJ}}\right) = \frac{\pi}{2}[2\pi] \end{cases}$