
Boucles et comparaisons

En programmation, on est souvent amené à répéter

plusieurs fois une instruction.

les boucles vont nous aider à réaliser cette tâche de

manière compacte.

Si vous souhaitiez afficher les éléments d’une liste les uns

après les autres….il faudra utiliser la fonction print

autant de fois que nous avons d'éléments!!!!!

animaux = ['girafe','tigre','singe','souris']

print (animaux[0])
print (animaux[1])
print (animaux[2])
print (animaux[3])

Et pour une liste à 120 éléments ???? Solution

>>> animaux = ['girafe','tigre','singe','souris']
>>> for animal in animaux:
... print(animal)
...
girafe
tigre
singe
souris

Imprimer chaque valeur de la variable animal prise

dans la liste animaux

La boucle for

for x in ensemble:
instruction 1
...
instruction n

Bloc d'instructions
exécuté pour
chaque valeur de x

Le bloc d'instruction est reconnu par une indentation produite
automatiquement lors de l'écriture de la boucle (tabulation).

Syntaxe générale

La boucle la plus répandue est celle qui parcourt

des indices entiers compris entre 0 et n-1. On

utilise pour cela la boucle for et la fonction range

Somme = 0 # initialisation de la variable somme à 0

N = 10
for n in range(0, N): # n va parcourir la gamme (0,N-1)

somme += n # incrémenter somme

somme += n est équivalente à somme= somme +n

Utilisation avec range()

>>> for i in range(4):
... print(i)
...
0123

Beaucoup plus simple encore

la fonction range() peut être utilisée telle quelle dans une boucle.
Il n’est pas nécessaire de taper for i in list(range(4)):, même si cela
fonctionnerait également.

range() est une fonction qui a été spécialement conçue que l’on peut
itérer directement dessus. Pour Python, il s’agit d’un nouveau type,
par exemple dans x = range(3) la variable x est de type range (tout
comme on avait les types int, float, str ou list) à utiliser spécialement
avec les boucles.

L’instruction list(range(4)) se contente de transformer un objet
de type range en un objet de type list.

C’est même contre-productif. En effet, range() se contente de
stocker l’entier actuel, le pas pour passer à l’entier suivant, et le
dernier entier à parcourir, ce qui revient à stocker seulement 3
entiers et ce quel que soit la longueur de la séquence, même
avec un range(1000000).

Si on utilisait list(range(1000000)), Python construirait d’abord
une liste de 1 million d’éléments dans la mémoire puis itérerait
dessus, d’où une énorme perte de temps !

Itération sur l'indice d'une liste

>>> x=0 #initialisation de x
>>> li=[1,2,-1,3] #definition de la liste
>>> for i in range(0,len(li)): #i parcours la gamme (0,4)

x=x+li[i] #cumule dans x
>>> print (x)
5
>>>

L'itération sur une liste peut se faire soit directement avec
for i in liste ou bien en utilisant l'indice de position des éléments de
la liste

La comparaison

>>> x = 5
>>> x == 5
True
>>> x > 10
False

Python renvoie la valeur True si la comparaison est

vraie et False si elle est fausse. True et False

sont des booléens.

ne pas confondre l’opérateur d’affectation = qui affecte une valeur
à une variable et l’opérateur de comparaison == qui compare les
valeurs de deux variables.

La boucle while

Syntaxe générale

while cond :
instruction 1
...
instruction n

>>> i = 1
>>> while i <= 4:
... print(i)
... i = i + 1
...
1234

Exemple

Une boucle while nécessite généralement trois éléments pour

fonctionner correctement :

- l’initialisation de la variable de test avant la boucle ;

- le test de la variable associé à l’instruction while ;

- la mise à jour de la variable de test dans le corps de la boucle.

En cas d'erreur qui mène à une boucle infinie on utilise la Ctrl-C

Instructions break et continue

=> L’instruction break stoppe la boucle.

=> L’instruction continue saute à l’itération suivante.

for i in range(5):
... ….if i > 2:
... ….Break
….print(i)
012

>>> for i in range(5):
... if i == 2:
... continue
... print(i)
...
0134

