
Les fichiers

Créer des petits morceaux de code et sans grand intérêt,

le problème de l'interpréteur, c'est qu'une fois celui-ci

fermé, votre travail est perdu.

L'idée d'un programme et fichier , c'est d'enregistrer

votre travail dans un fichier et ensuite de l'exécuter.

Lorsque du code est enregistré dans un fichier exécutable

on parle de script .

Pour créer un fichier vous utiliserez un nouveau fichier texte

Ouvrir et fermer un fichier

Créant un fichier texte nommé

"fichier1" sur le bureau

Créant un fichier python nommé

"python1" sur le bureau à l'aide de Notepad++ (ou autre éditeur)

La commande "open" permet d'ouvrir le fichier

L'argument "r" signifie en lecture seule

Le contenu est mis dans la variable "mon_fichier"

Ouvrir et fermer un fichier

L'exécution du fichier python1 avec affichage du

contenu de la variable mon_fichier

Pour fermer le fichier on utilise la méthode "close()"

mon_fichier.close()

3 modes d'ouverture de fichiers

Adressage relatif & absolu

Quand on décrit la position d'un fichier grâce à un chemin
relatif, on tient compte du dossier dans lequel on se trouve
actuellement.
Ainsi, si on se trouve dans le dossier C:\test et que l'on
souhaite accéder au fichier fic.txt contenu dans ce même
dossier, le chemin relatif menant à ce fichier sera tout
simplement fic.txt.

Maintenant, si on se trouve dans C:, notre chemin
relatif sera test\fic.txt.
Quand on décrit un chemin relatif, on utilise parfois le

symbole .. qui désigne le répertoire parent.

mon_fichier=open("fichier1.txt", "r")

Remarquez l'utilisation de l'adressage relatif lors de la méthode
open car le fichier d'exécution est dans le même répertoire que
celui du fichier à ouvrir

Lire l'intégralité d'un fichier
Méthode "read()"

Fichier python1

Fichier fichier1

Console

\n désigne un saut de ligne

Écriture dans un fichier
Méthode " write"

Bien entendu, il nous faut ouvrir le fichier avant tout.
Vous pouvez utiliser le mode w ou le mode a. Le premier
écrase le contenu éventuel du fichier, alors que le second
ajoute ce que l'on écrit à la fin du fichier.
Dans tous les cas, ces deux modes créent le fichier s'il
n'existe pas.

Fichier python1

Console

Fichier fichier1La méthode
write n'accepte
en paramètre
que des chaînes
de caractères.

Utilisation du mot clé "with"

with open(mon_fichier, mode_ouverture) as variable:
Opérations sur le fichier

>>> with open('fichier.txt', 'r') as mon_fichier:
texte = mon_fichier.read()

>>> Print(texte)

Les modules

Les modules sont des programmes Python qui contiennent des

fonctions que l’on est amené à réutiliser souvent (on les appelle

aussi bibliothèques ou librairies).

Les développeurs de Python ont mis au point

de nombreux modules qui effectuent une quantité phénoménale

de tâches qu'il suffit d'appeler par code pour les utiliser

Importer un module

Dans cet exemple nous appellerons random qui est un module

Python regroupant plusieurs fonctions permettant de

travailler avec des valeurs aléatoires.

La distribution des nombres aléatoires est réalisée par le

générateur de nombres pseudo-aléatoires Mersenne Twister,

l'un des générateurs les plus testés et utilisés dans le monde

informatique.

>>> import random # importation du module
>>> random.randint(0,10) # appel de la fonction "randint"
4

cette fonction randint() renvoie un nombre entier aléatoirement

tiré entre a inclus et b inclus (pas comme range(a,b)

>>> from random import randint
>>> randint(0,10)
7

Autre moyen d'importation d'une fonction

Importer tout d'un module

>>> from random import *
>>> x = [1, 2, 3, 4] # définition d'une liste x
>>> shuffle(x) # mélange aléatoire des éléments de x
>>> x
[2, 3, 1, 4]
>>> shuffle(x)
>>> x
[4, 2, 1, 3]
>>> randint(0,50)
46

Privilégiez la première méthode

Obtenir de l'aide sur un module importé

>>> import random
>>> help(random)

On peut se déplacer dans l’aide avec les flèches ou les touches

page-up et page-down .

Il est aussi possible d’invoquer de l’aide sur une fonction

particulière d’un module de la manière suivante

help(module.fonction)

La commande help() est en fait une commande plus générale

permettant d’avoir de l’aide sur n’importe

quel objet chargé en mémoire.

>>> t = [1, 2, 3]
>>> help(t)
Help on list object:
class list(object)
| list() -> new list
| list(sequence) -> new list initialized from sequence's
items
||
Methods defined here:
||
__add__(...)
| x.__add__(y) <==> x+y
|
...

Si on veut connaître d’un seul coup d’oeil toutes les

méthodes ou variables associées à un objet, on peut utiliser

la fonction dir()

>>> import random
>>> dir(random)
['BPF', 'LOG4', 'NV_MAGICCONST', 'RECIP_BPF', 'Random', 'SG_MAGICCONST',
'SystemRandom',
'TWOPI', 'WichmannHill', '_BuiltinMethodType', '_MethodType', '__all__',
'__builtins__',
'__doc__', '__file__', '__name__', '_acos', '_ceil', '_cos', '_e', '_exp', '_hexlify',
'_inst', '_log', '_pi', '_random', '_sin', '_sqrt', '_test', '_test_generator',
'_urandom', '_warn', 'betavariate', 'choice', 'expovariate', 'gammavariate', 'gauss',
'getrandbits', 'getstate', 'jumpahead', 'lognormvariate', 'normalvariate',
'paretovariate', 'randint', 'random', 'randrange', 'sample', 'seed', 'setstate',
'shuffle', 'uniform', 'vonmisesvariate', 'weibullvariate']

>>>

Modules courants

— math : fonctions et constantes mathématiques (sin, cos, exp, pi. . .).

— sys : passage d’arguments, gestion de l’entrée/sortie standard. . .

— os : dialogue avec le système d’exploitation (permet de sortir de Python,

lancer une commande en shell. . .).

— random : génération de nombres aléatoires.

— time : accéder à l’heure de l’ordinateur et aux fonctions gérant le temps.

— profile : permet d’évaluer le temps d’exécution de chaque fonction dans

un programme (profiling en anglais).

— urllib : permet de récupérer des données sur internet depuis Python.

— tkinter : (permet de créer des objets graphiques)

— pickle : écriture et lecture de structures Python (comme les dictionnaires

par exemple).

Les expressions régulières
regular expressions

Des expressions normalisées qui vous permettent de

chercher et récupérer des informations dans un fichier

Une expression régulière est une suite de caractères qui a pour

but de décrire un fragment de texte.

Elle est constitué de deux types de caractères :

— Les caractères dits normaux.

— Les méta caractères ayant une signification particulière,

ˆ Début de chaîne de caractères ou de ligne.

Exemple : l’expression ˆATG correspond à la chaîne de
caractères ATGCGT mais pas à la chaîne CCATGTT.

$  Fin de chaîne de caractères ou de ligne.

Exemple : l’expression ATG$ correspond à la chaîne de
caractères TGCATG mais pas avec la chaîne CCATGTT.

.  N’importe quel caractère

Exemple : l’expression A.G correspond à ATG, AtG, A4G,
mais aussi à A-G ou à A G.

[ABC] Le caractère A ou B ou C (un seul caractère).

Exemple : l’expression T[ABC]G correspond à TAG, TBG ou TCG,
mais pas à TG.

[A-Z]  N’importe quelle lettre majuscule.

Exemple : l’expression C[A-Z]T correspond à CAT, CBT, CCT. . .

[a-z]  N’importe quelle lettre minuscule

[0-9] N’importe quel chiffre

[A-Za-z0-9]  N’importe quel caractère alphanumérique.

[ˆAB] N’importe quel caractère sauf A et B.

Exemple : l’expression CG[ˆAB]T correspond à CG9T, CGCT. . mais
pas à CGAT ni à CGBT.

\  Caractère d’échappement (pour protéger certains

caractères).
Exemple : l’expression \+ désigne le caractère + sans autre
signification particulière. L’expression A\.G correspond à A.G et
non pas à A suivi de n’importe quel caractère, suivi de G.

*  0 à n fois le caractère précédent ou l’expression entre

parenthèses précédente.
Exemple : l’expression A(CG)*T correspond à AT, ACGT, ACGCGT. . .

+ 1 à n fois le caractère précédent ou l’expression entre

parenthèses précédente.
Exemple : l’expression A(CG)+T correspond à ACGT, ACGCGT. . . mais
pas à AT.

? 0 à 1 fois le caractère précédent ou l’expression entre

parenthèses précédente.
Exemple : l’expression A(CG)?T correspond à AT ou ACGT.

{n} n fois le caractère précédent ou l’expression entre

parenthèses précédente.
Exemple : l’expression A(CG){2}T correspond à ACGCGT mais pas
à ACGT, ACGCGCGT ou ACGCG.

{n,m} n à m fois le caractère précédent ou l’expression entre

parenthèses précédente.
Exemple : l’expression A(C){2,4}T correspond à ACCT, ACCCT et
ACCCCT mais pas à ACT, ACCCCCT ou ACCC.

{n,}  Au moins n fois le caractère précédent ou l’expression

entre parenthèses précédente.
Exemple : l’expression A(C){2,}T correspond à ACCT, ACCCT et ACCCCT
mais pas à ACT ou ACCC.

{,m} Au plus m fois le caractère précédent ou l’expression

entre parenthèses précédente.
Exemple : l’expression A(C){,2}T correspond à AT, ACT et ACCT
mais pas à ACCCT ou ACC.

(CG|TT)  Les chaînes de caractères CG ou TT.

Exemple : l’expression A(CG|TT)C correspond à ACGC ou ATTC.

Module re et la fonction search

Chercher un mot dans un texte est une tâche facile, c’est

l’objectif de la méthode find attachée aux chaînes de caractères,

elle suffit encore lorsqu’on cherche un mot au pluriel ou au

singulier mais il faut l’appeler au moins deux fois pour chercher

ces deux formes.

Pour des expressions plus compliquées, il est conseillé d’utiliser

les expressions régulières. C’est une fonctionnalité qu’on retrouve

dans beaucoup de langages. C’est une forme de grammaire qui

permet de rechercher des expressions.

Dans le module re, la fonction search() permet de rechercher

un motif (pattern) au sein d’une chaîne de caractères avec une

syntaxe de la forme search (motif, chaine). Si motif existe

dans chaine Python renvoie un objet du type SRE_Match

>>> import re #appel du module re
>>> animaux = "girafe tigre singe"
>>> re.search('tigre', animaux) #le module cherche la chaine
'tigre' dans la chaine animaux
<_sre.SRE_Match object at 0x7fefdaefe2a0> # ok c'est trouvé
>>> if re.search('tigre', animaux): #si oui dites "ok"
... print "OK"
...
OK

Remarquez l'absence de résultat de la condition

