
Les fonctions

Une fonction est une partie d’un programme - ou sous-
programme - qui fonctionne indépendamment du reste du
programme.
Elle reçoit une liste de paramètres et retourne un résultat

Fonction
argument1

argument2
Résultat

Déclaration

Remarquez l'indentation

def fonction_nom (par_1, ..., par_n) :
instruction_1
...
instruction_n
return res_1, ..., res_n

>>> def carre(x):
... return x**2
...
>>> print(carre(2))
4

>>> res = carre(2)
>>> print(res)
4

>>> def hello():
... print("bonjour")
...
>>> hello()
bonjour

>>> def fois(x,y):
... return x*y
...
>>> fois(2,3)
6
>>> fois(3.1415,5.23)
16.430045000000003
>>> fois('to',2)
'toto'

Python est un langage au
typage dynamique, c’est-à-dire
qu’il reconnaît pour vous le
type des variables au moment
de l’exécution

Portée des variables

Une variable est dite locale lorsqu’elle est créée dans
une fonction, car elle n’existera et ne sera visible que
lors de l’exécution de la dite fonction.
Une variable est dite globale lorsqu’elle est créée
dans le programme principal ; elle sera visible partout
dans le programme.

Nous allons suivre un exemple simple illustrant

L'exécution d'un programme principal qui met en

jeux une variable globale contenant une fonction avec

des variables locales

def carre(x): # définition d'une fonction carre()
y = x**2 # x et y sont locales
return y

z = 5 # déclaration d'une variable globale
resultat = carre(5) # récupération de la fonction dans resultat

print(resultat) # une variable globale et l'afficher

Trace d'un programme avec fonction
http://www.pythontutor.com

Etape 1 : Python est prêt à lire la première ligne de code.

Etape 2 : Python met en mémoire la fonction carre() (notez qu’il
ne l’exécute pas !). La fonction est mise dans une case de la
mémoire nommée global frame qui est l’espace mémoire du
programme principal.
Python est maintenant prêt à exécuter le programme principal

Etape 3 : Python lit et met en mémoire la variable z. Celle-ci étant
créée dans le programme principal, il s’agira d’une variable globale.
Ainsi, elle sera également stockée dans le global frame

Etape 4 : La fonction carre() est appelée et on lui passe en argument
l’entier 5. La fonction rentre alors en exécution et un nouveau cadre
bleu est créé dans lequel python tutor va nous indiquer toutes les
variables locales à la fonction. Notez bien que la variable passée en
argument, qui s’appelle x dans la fonction, est créée en tant que
variable locale.

Etape 5 : Python est maintenant prêt à exécuter chaque ligne de
code de la fonction.

Etape 6 : La variable y est créée dans la fonction. Celle-ci est donc
stockée en tant que variable locale à la fonction.

Etape 7 : Python s’apprête à retourner la variable locale y au
programme principal python tutor nous indique le contenu de la
valeur retournée).

Etape 8 : Python quitte la fonction et la valeur retournée par
celle-ci est affectée à la variable globale resultat. Notez bien que
lorsque Python quitte la fonction, l’espace des variables
allouées à la fonction est détruit. Ainsi toutes les variables créées
dans la fonction n’existent plus. On comprend pourquoi elles
portent le nom de locales puisqu’elles n’existent que lorsque la
fonction est en exécution.

Etape 9 : Python affiche le contenu de la variable resultat
et l’exécution est terminée.

>>> def mafonction():
... print(x)
...
>>> x = 3
>>> mafonction()
3
>>> print(x)
3

Autres exemples

lorsqu’une variable déclarée à la
racine du module (c’est comme cela
que l’on appelle un programme
Python), elle est visible dans tout le
module. On parle de variable globale

>>> def mafonction():
... x = x + 1
...
>>> x=1
>>> mafonction()
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "<stdin>", line 2, in fct
UnboundLocalError: local variable 'x' referenced before
assignment

Python ne permet pas la modification d’une variable globale dans
une fonction. Python pense que x est une variable locale qui n’a pas
été encore assignée. Solution = il faut utiliser le mot-clé global :

>>> def mafonction():
... global x
... x = x + 1
...
>>> x=1
>>> mafonction()
>>> x
2

l’utilisation de variables globales est à bannir définitivement
de votre pratique de la programmation.
Python est orienté objet et cela permet “d’encapsuler” des
variables dans des objets et de s’affranchir définitivement des
variables globales

