
Les listes

Une liste est une structure de données qui contient une série

de valeurs.

Python autorise la construction de liste contenant des valeurs

de type différent (par exemple entier et chaîne de caractères),

ce qui leur confère une grande flexibilité

Une liste est déclarée par une série de valeurs (ne pas oublier les

guillemets, simples ou doubles, s’il s’agit de chaînes de caractères)

séparées par des virgules, et le tout encadré par des crochets

On appelle les éléments par leur position index ou indice ….

>>> animaux = ['girafe','tigre','singe','souris']
>>> tailles = [5, 2.5, 1.75, 0.15]
>>> mixte = ['girafe', 5, 'souris', 0.15]
>>> animaux
['girafe', 'tigre', 'singe', 'souris']
>>> tailles
[5, 2.5, 1.75, 0.15]
>>> mixte
['girafe', 5, 'souris', 0.15]

>>> animaux = ['girafe','tigre','singe','souris']
>>> animaux[0]
'girafe'
>>> animaux[1]
'tigre'
>>> animaux[3]
'souris'

Opérations sur les listes

>>> ani1 = ['girafe','tigre']
>>> ani2 = ['singe','souris']
>>> ani1 + ani2
['girafe', 'tigre', 'singe', 'souris']
>>> ani1 * 3
['girafe', 'tigre', 'girafe', 'tigre', 'girafe', 'tigre']

Concaténation

>>> l = [] # liste vide
>>> l
[]
>>> l = l + [15]
>>> l
[15]
>>> l = l + [-5]
>>> l
[15, -5]

Alimentation par code

>>> l = []
>>> l
[]
>>> l.append(15)
>>> l
[15]
>>> l.append(-5)
>>> l
[15, -5]

Indice négatif et tranches

Les indices négatifs reviennent à compter à partir de la fin.

Leur principal avantage est que vous pouvez accéder au

dernier élément d’une liste à l’aide de l’indice -1 sans pour

autant connaître la longueur de cette liste.

>>> animaux = ['girafe','tigre','singe','souris']
>>> animaux[-1]
'souris'
>>> animaux[-2]
'singe'
>>> animaux[2]
'singe'

Récupérer une partie d'une liste

pour récupérer tous les éléments, du émième au énième

On utilise la notation suivante

[m:n+1]

Le n+1 nième élément n'est pas compris dans ma sélection

Exemples

>>> animaux = ['girafe', 'tigre', 'singe', 'souris']
>>> animaux[0:2]
['girafe', 'tigre']
>>> animaux[0:3]
['girafe', 'tigre', 'singe']
>>> animaux[0:]
['girafe', 'tigre', 'singe', 'souris']
>>> animaux[:]
['girafe', 'tigre', 'singe', 'souris']
>>> animaux[1:]
['tigre', 'singe', 'souris']
>>> animaux[1:-1]
['tigre', 'singe']

Notez que lorsqu’aucun indice n’est indiqué à gauche ou à droite du

symbole :, Python prend par défaut tous les éléments depuis le
début ou tous les éléments jusqu’à la fin respectivement.

On peut aussi préciser le pas en ajoutant un :
supplémentaire et en indiquant le pas par un entier.

>>> animaux = ['girafe', 'tigre', 'singe', 'souris']
>>> animaux[0:3:2]
['girafe', 'singe']

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> x[::1]
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> x[::2]
[0, 2, 4, 6, 8]
>>> x[::3]
[0, 3, 6, 9]
>>> x[1:6:3]
[1, 4]

Finalement, on voit que l’accès au contenu d’une liste avec des

crochets fonctionne sur le modèle liste [début:fin:pas].

L’instruction len() vous permet de connaître la longueur

d’une liste, c’est-à-dire le nombre d’éléments que contient

la liste.

La fonction len()

>>> animaux = ['girafe', 'tigre', 'singe', 'souris']
>>> len(animaux)
4
>>> len([1, 2, 3, 4, 5, 6, 7, 8])
8

Générer une liste de nombres entiers

L’instruction range() va nous permettre de générer des

nombres entiers compris dans un intervalle lorsqu’elle est

utilisée en combinaison avec la fonction list()

>>> list(range(10))
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

Lister une gamme de 10 entier
Par défaut on commence par 0

L’instruction range() fonctionne sur le modèle range

(début ,fin, pas). Les arguments entre crochets sont

optionnels. Pour obtenir une liste, il faut l’utiliser

systématiquement avec la fonction list().

>>> list(range(0,5))
[0, 1, 2, 3, 4]
>>> list(range(15,20))
[15, 16, 17, 18, 19]
>>> list(range(0,1000,200))
[0, 200, 400, 600, 800]
>>> list(range(2,-2,-1))
[2, 1, 0, -1]

>>> list(range(10,0,-1))
[10, 9, 8, 7, 6, 5, 4, 3, 2, 1]

Listes de listes

Il est tout-à-fait possible

de construire des listes

de listes. Cette

fonctionnalité peut être

parfois très pratique

À préconiser au lieu des

tableaux

>>> enclos1 = ['girafe', 4]
>>> enclos2 = ['tigre', 2]
>>> enclos3 = ['singe', 5]
>>> zoo = [enclos1, enclos2, enclos3]
>>> zoo
[['girafe', 4], ['tigre', 2], ['singe', 5]]

>>> zoo[1]
['tigre', 2]

>>> zoo[1][0]
'tigre'
>>> zoo[1][1]
2

— append() qui permet d’ajouter un élément à la fin d’une liste
existante.
>>> l = [1,2,3]
>>> l.append(5)
>>> l
[1, 2, 3, 5]
qui est équivalent à
>>> l = [1,2,3]
>>> l = l + [5]
>>> l
[1, 2, 3, 5]

Autres méthodes sur les listes

— insert() pour insérer un objet dans une liste avec un indice
>>> l.insert(2,-15)
>>> l
[1, 2, -15, 3, 5]

— del pour supprimer un élément d’une liste à une indice
>>> del l[1]
>>> l
[1, -15, 3, 5]

Contrairement aux autre méthodes associées aux listes, del est
une fonction générale de Python (utilisable pour d’autres objets
que les listes), et celle-ci ne prend pas de parenthèse.

— remove() supprimer un élément d’une liste à partir de sa valeur.
>>> l.remove(5)
>>> l
[1, -15, 3]

— sort() pour trier une liste.
>>> l.sort()
>>> l
[-15, 1, 3]

— count() pour compter le nombre d’éléments (passé en argument)
dans une liste.
>>> l=[1, 2, 4, 3, 1, 1]
>>> l.count(1)
3
>>> l.count(4)
1
>>> l.count(23)
0

attention, certaines fonctions ci-dessus décalent les indices d’une
liste (par exemple insert(), del etc).

La méthode append(), que nous avons déjà vue, est
particulièrement pratique car elle permet de construire une liste au
fur et à mesure des itérations d’une boucle. Pour cela, nous vous
rappelons qu’il est commode de définir préalablement une liste vide

>>> seq = 'CAAAGGTAACGC'
>>> seq_list = []
>>> seq_list
[]
>>> for base in seq:
... seq_list.append(base)
...
>>> seq_list
['C', 'A', 'A', 'A', 'G', 'G', 'T', 'A', 'A', 'C', 'G', 'C']

vous pouvez directement utiliser la fonction list() qui prend
n’importe quel objet séquentiel (liste, chaîne de caractères, tuples ..
et qui renvoie une liste (pas pratique quand on crée les élèments un
à un par une boucle par exemple !!!!

>>> seq = 'CAAAGGTAACGC'
>>> list(seq)
['C', 'A', 'A', 'A', 'G', 'G', 'T', 'A', 'A', 'C', 'G', 'C']

— in permet de tester si un élément est dans la liste
>>> list=[1, 3, 5, 7, 9]
>>> print(3 in list)
True

Application

Application

Application

Application
1

2

