
Les tests

=>Les tests permettent à l’ordinateur de prendre des

décisions si telle ou telle condition est vraie ou fausse.

=> Python utilise l’instruction if ainsi qu’une

comparaison que nous avons abordée au chapitre

précédent

x = 2
if x == 2:
... print("Le test est vrai !")
...
Le test est vrai !

Syntaxe générale

if condition1 :
instruction1
instruction2
...

else :
instruction3
instruction4
...

>>> x = 2
>>> if x == 2:
... print("Le test est vrai !")
... else:
... print("Le test est faux !")

Attention à l'indentation et les deux points

Tests à plusieurs cas

tester si la condition est vraie ou si elle est fausse
dans une même instruction if

On utilise souvent des opérateurs logiques

L'opérateur "OU" "or"

L'opérateur "ET" "and"
Respectez bien la
casse des opérateurs
and et or qui, en
Python, s’écrivent en
minuscule

>>> x = 2
>>> y = 2
>>> if x == 2 and y == 2:
... print("le test est vrai")
...
le test est vrai

>>> x = 2
>>> y = 2
>>> if x == 2:
... if y == 2:
... print("le test est vrai")
...
le test est vrai

Imbrication de testsOpérateurs logiques

Tests de valeur sur des réels

>>> (3 - 2.7) == 0.3
False
>>> 3 - 2.7
0.2999999999999998

Nous voyons que le résultat de l’opération 3 - 2.7 n’est pas

exactement 0.3 !!!!!! d’où le False. Pour éviter ces problèmes

nous conseillons de toujours d'arrondir vos résultats

Arrondir un nombre réel

>>> round(3.1415)
3

Arrondir un nombre réel au dixième

>>> x = 1.4567
>>> round(x,1)
1.5

Argument à modifier (nb de chiffres
après la virgule)

Convertir un nombre réel en entier

>>> x = 3.1415
>>> x = int(x)
>>> x
3
>>> type(x)
<class 'int'>

Arrondir à l'entier sup ou inf

>>> x = 3.1415
>>> x = ceil(x)
>>> x
4

>>> x = 3.1415
>>> x = floor(x)
>>> x
3

>>> x = -3.1415
>>> x = floor(x)
>>> x
-4

Proposez un script qui permet de vérifier si le nombre rentré par
un utilisateur est pair ou impair ou nul avec deux blocs "if"
imbriqués

